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This Talk

Foundation: Differentiable convex optimization

Differentiable continuous control
Differentiable model predictive control
Differentiable cross-entropy method
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Can we throw big neural networks at every problem?

(Maybe) Neural networks are soaring in vision, RL, and language
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{ AGl: A pile of linear algebra?\\

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 3



Optimization-Based Modeling for Machine Learning

1 Model [ _J —
)
{ S ¥ Optimization Layer - - |
)
{ Ziv1 = argmin fg(z,z;) \

Z
subjectto z € Cy(z, z;)

« Adds domain knowledge and hard constraints to your modeling pipeline
» Integrates and trains nicely with your other end-to-end modeling components
« Applications in RL, control, meta-learning, game theory, optimal transport
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Optimization Layers Model Constraints

True Constraint (Unknown to the model)

Example 1 Example 2

Example 3 Example 4

. Constraint Predictions During Training

Example 1 Example 2

Example 3 Example 4
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Optimization Perspective of the ReLU

Proof [S2 of my thesis]: Comes from first-order optimality

y = max{0, x}

L |

*

y*= argmin ||y — x||3
y
subjectto y =0
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Optimization Perspective of the Sigmoid

Proof [S2 of my thesis]: Comes from first-order optimality

1 1.0 ¢
1+ exp {—x) 0.8

0.6
Y
0.4

y

y* = argmin —y'x — H,(y) o2t
y
subjectto 0 <y <1 0.0
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Optimization Perspective of the Softmax

Proof [S2 of my thesis]: Comes from first-order optimality

exp x

y:

2; exp X;

|

*

y* = argmin —y'x — H(y)
y

subject to
1Ty =1
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How can we generalize this?

Zip1 = argmin fo(z,z;)
Z

subjectto z € Cy(z, z;)
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The Implicit Function Theorem

[Dini 1877, Dontchev and Rockafellar 2009]

Given g(x,y) and f(x) = g(x,y"), where
y' € {y:g(x,y) = 0} |

How can we compute D,.f (x)?

The Implicit Function Theorem gives

D.f(x) = —Dyg(x, () Dyg(x, f(x))

under mild assumptions

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 10



Implicitly Differentiating a Quadratic Program

[OptNet] We only consider convex QPs

1
x* = argmin ExTQx +p'x
X

subjectto Ax =b Gx<h

4
4

Impilicitly differentiating R gives Dy (z*) = —(DZ:R(Z*))_lD@R(z*)

[IKKT Optimality]
Find z* s.t. R(z*,0) = 0
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Cones and Conic Programs

Most convex optimization problems can be transformed into a (convex) conic program

x* = argmin c'x
X
subjectto b —Ax € K
Zero: {0}
Free: R™
Non-negative: R}
Second-order {(t,x) € Ry xXR"|||x]|], < t}

Semidefinite: S%
Exponential: {(x,y,z) € R3|ye*Y < z,y > 0} U R_x{0}xR,

Cartesian Products: K = K X -+ XX,

0
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Implicitly Differentiating a Conic Program

[e.g. S7 of my thesis]
x* = argmin c'x
X

subjectto b —Ax € K

4
4

Impilicitly differentiating R gives Dy (z*) = —(DZ:R(Z*))_lD@R(z*)

[Conic Optimality]
Find z* s.t. R(z*,0) = 0
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Some Applications

Learning hard constraints
Modeling projections
Game theory

RL and control
Meta-learning

Energy-based learning and structured prediction
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From the softmax to soft/differentiable top-k

[Constrained softmax, constrained sparsemax, Limited Multi-Label Projection]

Vision application: End-to-end learn the top-k recall or predictions

* *

y* = argmin —y'x — H(y) y* = argmin —y'x — Hp(y)
y # y
subject to subject to

=1 1Ty =k

sigmoid

011 111
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- - - - - e - ---

2110

000 100
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Optimization layers need to be carefully implemented

dQz* + Qdz + dg + dATv*+

T ~T * invQ_AT = A.transpose(l, 2).lu_solve(*Q_LU)
ATdy +dGT X+ GTd) =0 Q A G dﬂ? Vel A_invQ_AT = torch.bmm(A, invQ_AT)
dAZ + Ad db— 0 A 0 0 ’;‘ - — 0 G_invQ_AT = torch.bmm(G, invQ_AT)
VA Z — = ~
D(G * h,)d)\ + D()\*)(dG * + Gd . dh) . 0 G O 0 d; 0 LU_A_invQ_AT = lu_hack(A_invQ_AT)
z z z — P_A_invQ_AT, L_A_invQ_AT, U_A_invQ_AT = torch.lu_unpack(*
T T T T P_A_invQ_AT = P_A_invQ_AT.type_as(A_invQ_AT)
Q G A dz —dQz* —dgqg — dG* \* —dA* V*
DG D(Gz*—h) 0| [d\]| = D(M\*)dGz* + D(\*)dh T h T A T A
( ) ( Z = ) = - ( ) 2"+ ( ) U_A_invQ_AT_inv = CP_A_invQ_AT.bmm(L_A_invQ_AT)
A 0 0 dv —dAz* + db ).1lu_solve(*LU_A_invQ_AT)
K S_LU_21 = G_invQ_AT.bmm(U_A_invQ_AT_inv)
- ~ T = G_invQ_AT.transpose(l, 2).lu_solve(*LU_A_invQ_AT)
Tt A T A S_LU_12 = U_A_invQ_AT.bmm(T)
i o E E T T . 7 i : ] 1 ’ . S_LU_22 = torch.zeros(nBatch, nineq, nineq).type_as(Q)
e Rt R R : : Vol = =(d.z" + zd V.0 =d S_LU_data = torch.cat((torch.cat((S_LU_11, S_LU_12), 2),
5 IC;: L I 0 5 I\t: ;t @ 2( ; . ) 1 ‘ torch.cat((S_LU_21, S_LU_22), 2)),
S O S O S t | — _ t — — — il
E —I| C F | 7_€+1 B Ct+1 VAK duz + deT T be d,, S_LU_pivots[:, :neq] = aU_A_ian_AT[lj
0 t+1 t+1 )‘t—i-l fr+1 Vce = D(/\*)(d,\z -+ )\dz) Vil = —D(/\*)d)\
______________________ Foa 0 ; . R -= G_invQ_AT.bmm(T)
C T i a1 Y. . 1
; ‘ =@ et ered)  o—=d,  [&][Q ¢TDOY) AT [V
ol [Vt : Ct dy| = |G D@Gz*—h) 0 0
>\t O ag — * ® 7_* _|_ )\* ® d* ag — d* dl, A 0 0 O
. . OF, At41 t t+1 Tt 8ft At
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Why should practitioners care?

dQz* + Qdz + dg + dATv*+ L

, T * ) invQAT = A.t (1, 2).lu_solve(*Q_LU)
ATy +d6Tx + GTar—0 |@ A G s Vol | ey say
dAz* + Adz — db = 0 {1 0 0 i‘ = — 0 G_invQ_AT = torch.bmm(G, invQ_AT)
D(G2* — h)dA + D LGd:—dny—o LG 0 0 b 0 LUA{VQAT = u_hack

P_A_iNVQAT, LA~ _A_invQ_AT = torch.lu_unpack(*
P_A_invQ_AT™ AT . type_as(A_invQ_AT)

Q GT d 2 —dQz* — dg — dGT ) \* — dATV*
* * g WU_A_inVQ_AT[0]
D(A\*)G D(Gz*—h) 0 —D(A\*)dGz* + D(A*)dh _WVQAT_inv = (P_A_invQ_AT.bmm(L_A_invQ_AT)
A 0 0 dv —dAz* <+ db ).lu_solve(*LU_A_invQ_AT)
K S_LU_21 = G_invQ_AT.bmm(U_A_invQ_AT_inv)
% ~ T = G_invQ_AT.transpose(l, 2).lu_solve(*LU_A_invQ_AT)
T At Teql At41 S_LU_12 = U_A_invQ_AT.bmm(T)
| 1 1T -] : S_LU_22 = torch.zeros(nBatch, nineq, nineq).type_as(Q)
B e R L . : S_LU_data = torch.cat((torch.cat((S_LU_11, S_LU_12), 2),
R [—I 0] | I\t* s torch.cat((S_LU_21, S_LU_22), 2)),
********* - S 4 I S T*tl = +vd! Vil - 13U -
t+ ivots[:, : = i
o] cn rL o PeL— D(N)(dn" + MdT) Vil = —D >
______________________ Fo 0 : ~<)_AT. bmm(T)

1 oY
== (d&r, @7 + 77 ®@dy},) — =d}, d. Q G D R
K ’ %;t dx| = — |G D(Gz*—h
d, A 0
o7, ~ D ®T¢ H A @dn, a5, ~ %
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Differentiable convex optimization layers

NeurlPS 2019 (and officially in CVXPY)
Joint work with A. Agrawal, S. Barratt, S. Boyd, S. Diamond, J. Z. Kolter

{(Xpy | () PyTorch

x*(0) = argmin f(x;0)

bj c ;0) <0
subject to "glgcc’ 0% =0 q Tensor

locuslab.github.i10/2019-10-28-cvxpylayers
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A new way of rapidly prototyping optimization layers

Backprop

cvxpy optimization layer

Inputs [C= ++E=p [~ .y, —argmin forzp | *" 59| Loss

Z

s.t. z € Cg(z;)

Parameters Canonicalized
Problem Cone Program E— —
. X . one rogram rlglna roblem
Variables .
rl Objective . T Solution > Solution E?
Constraints arg}rcmn X
Constants st. Ax <y b
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This Talk

Differentiable continuous control
Differentiable model predictive control
Differentiable cross-entropy method
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Should RL policies have a system dynamics model or not?

[ Policy NEWTE] '

Network(s)

w System . Future

| Dynamics Plan |

Model-free RL
More general, doesn’t make as many assumptions about the world
Rife with poor data efficiency and learning stability issues

Model-based RL (or control)
A useful prior on the world if it lies within your set of assumptions
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Known or learned from data

Brandon Amos

System
Dynamics

Initial State

Model Predictive Gontrol

Model Predictive Control

Finds an optimal future trajectory

> Optimal actions
to take next

Differentiable Optimization-Based Modeling and Continuous Control
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The Objective Mismatch Problem

Control

—>

Interacts

—P | Environment

Training: Maximum Likelihood

POliCy Tlg (X)

Objective Mismatch ¢y Responses
——

Trajectories | State Transitions
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Differentiable Model Predictive Gontrol

A pure planning problem given cost and dynamics:

(TI:T = argmin Z Co(T4)|Cost

subject to x; = Xjpjt

Xe+1 = |fp () Dynamics
usu<u
~ ,

\_

Idea: Differentiate through this optimization problem

Differentiable Optimization-Based Modeling and Continuous Control
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Differentiable Model Predictive Control
Y Model [ —>

i
- m N — L~

What can we do with this now?

Augment neural network policies in model-free algorithms with MPC policies
Replace the unrolled controllers in other settings

Fight objective mismatch by end-to-end learning dynamics
The cost can also be end-to-end learned! No longer need to hard-code in values
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Approach 1: Differentiable MPC/iLQR

Can differentiate through the chain of QPs or just the last one if it’s a fixed point

QP lterate i
— T
t

T1:T
subjectto x; = x4t

Xt+1 — fel (7¢)
usu<su
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Differentiating LQR with LQR

Solving LQR with dynamic Riccati recursion efficiently solves the KKT system

K
Tt At . Tt4+1 >\t—|—1_
o U oy c
B L s Y R Y I A
1| T | |G
0] Crrr P A Jt+1
______________________ Foyr : :

Backwards Pass: Implicitly differentiate the LQR KKT conditions:

o 1, . o a0 J* v,
aCt - 5 (dn QT+ T D dn) a_ct - th &cimt B d)\o Whel’e K i{t - — 7O—t
ol . l4 ¢

a_}wt - d§t+1 ® Tt* + )\:-i-l ® th a_ft - d;t

Just another LQR problem!)
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Approach 2: The Cross-Entropy Method

lterative sampling-based optimizer that:

1. Samples from the domain
2. Observes the function’s values
3. Updates the sampling distribution

SOTA optimizer for control and model-based RL
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The Differentiable Cross-Entropy Method (DCEM)

Differentiate backwards through the sequence of samples
- Using differentiable top-k (LML) and reparameterization

Useful when a fixed point is hard to find, or when
unrolling gradient descent hits a local optimum

A differentiable controller in the RL setting
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DCEM fine-tunes highly non-convex controllers

51tes qooqle com/v1ew/d1ff —Cross-— entroov method
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https://sites.google.com/view/diff-cross-entropy-method/home

DCEM can exploit the solution space structure

CEM over the full action space
Iteration 0 Samples Iteration 3 Samples Iteration 6 Samples Iteration 9 Samples

x* = argmin f(x)

x€[0,1]N P
Full Domain S
ManifOId Of R Tirr.1esltep o I Time;tep I h I Times'tep | B | Time;tep

Optimal Solutions

DCEM over the latent action space
Iteration 0 Samples Iteration 3 Samples Iteration 6 Samples Iteration 9 Samples

Controls

Timestep Timestep Timestep

Latent Manifold
of Optimal Solutions

Latent Dim 2

Latent Dim 1 Latent Dim 1 Latent Dim 1 Latent Dim 1
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Differentiable Optimization-Based Modeling

and Continuous Control

YW brandondamos
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« Differentiable QPs: OptNet [I[CML 2017]

 Differentiable Stochastic Opt: Task-based Model Learning [NeurlPS 2017]
« Differentiable MPC for End-to-end Planning and Control [NeurlPS 2018]
 Differentiable Convex Optimization Layers [NeurlPS 2019]

« Differentiable Optimization-Based Modeling for ML [Ph.D. Thesis 2019]
 Differentiable Top-k and Multi-Label Projection [arXiv 2019]

» Obijective Mismatch in Model-based Reinforcement Learning [L4DC 2020]
 Differentiable Cross-Entropy Method [ICML 2020]
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