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This Talk
Foundation: Differentiable convex optimization

Differentiable continuous control
Differentiable model predictive control
Differentiable cross-entropy method
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Can we throw big neural networks at every problem?
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(Maybe) Neural networks are soaring in vision, RL, and language

A lot of data Model Predictions Loss

AGI: A pile of linear algebra?



Optimization-Based Modeling for Machine Learning

• Adds domain knowledge and hard constraints to your modeling pipeline
• Integrates and trains nicely with your other end-to-end modeling components
• Applications in RL, control, meta-learning, game theory, optimal transport
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Optimization Layer

A lot of data Model Predictions Loss

𝑧!"# = argmin
$

𝑓% 𝑧, 𝑧!
subject to 𝑧 ∈ 𝐶% 𝑧, 𝑧!

… …



Optimization Layers Model Constraints
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Constraint Predictions During TrainingTrue Constraint (Unknown to the model)

Example 1 Example 2

Example 3 Example 4

Example 1 Example 2

Example 3 Example 4



Optimization Perspective of the ReLU
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𝑦⋆ = argmin
6

𝑦 − 𝑥 7
7

subject to 𝑦 ≥ 0

𝑦 = max{0, 𝑥}

Proof [S2 of my thesis]: Comes from first-order optimality



Optimization Perspective of the Sigmoid
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Proof [S2 of my thesis]: Comes from first-order optimality

𝑦 =
1

1 + exp {−𝑥}

𝑦⋆ = argmin
6

−𝑦8𝑥 − 𝐻9(𝑦)

subject to 0 ≤ 𝑦 ≤ 1



Optimization Perspective of the Softmax

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 8

Proof [S2 of my thesis]: Comes from first-order optimality

𝑦 =
exp 𝑥

Σ: exp 𝑥:

𝑦⋆ = argmin
6

−𝑦8𝑥 − 𝐻(𝑦)

subject to 0 ≤ 𝑦 ≤ 1
18𝑦 = 1



How can we generalize this?
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𝑧:;< = argmin
=

𝑓> 𝑧, 𝑧:
subject to 𝑧 ∈ 𝐶> 𝑧, 𝑧:



The Implicit Function Theorem
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Given 𝑔(𝑥, 𝑦) and 𝑓 𝑥 = 𝑔 𝑥, 𝑦& , where 
𝑦& ∈ {𝑦: 𝑔 𝑥, 𝑦 = 0}

How can we compute D'𝑓 𝑥 ?

The Implicit Function Theorem gives

D'𝑓 𝑥 = −D(𝑔 𝑥, 𝑓 𝑥 )#D'𝑔 𝑥, 𝑓 𝑥

under mild assumptions

[Dini 1877, Dontchev and Rockafellar 2009]

D(𝑔(𝑥, 𝑓 𝑥 )

D'𝑔(𝑥, 𝑓 𝑥 )



Implicitly Differentiating a Quadratic Program
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𝑥⋆ = argmin
"

1
2 𝑥

#𝑄𝑥 + 𝑝#𝑥

subject to 𝐴𝑥 = 𝑏 𝐺𝑥 ≤ ℎ

Find 𝑧⋆ s.t. ℛ 𝑧⋆, 𝜃 = 0 where 𝑧⋆ = [𝑥⋆, … ] and 𝜃 = 𝑄, 𝑝, 𝐴, 𝑏, 𝐺, ℎ

Implicitly differentiating ℛ gives 𝐷> 𝑧⋆ = − 𝐷=ℛ 𝑧⋆
J<
𝐷>ℛ 𝑧⋆

[OptNet] We only consider convex QPs

[KKT Optimality]



Cones and Conic Programs

Zero: 0
Free: ℝ*
Non-negative: ℝ"*
Second-order (Lorentz): 𝑡, 𝑥 ∈ ℝ"×ℝ* 𝑥 + ≤ 𝑡}
Semidefinite: 𝕊"*
Exponential: 𝑥, 𝑦, 𝑧 ∈ ℝ, 𝑦𝑒'/( ≤ 𝑧, 𝑦 > 0} ∪ ℝ)× 0 ×ℝ"

Cartesian Products: 𝒦 = 𝒦#×⋯×𝒦.
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𝑥⋆ = argmin
"

𝑐#𝑥

subject to 𝑏 − 𝐴𝑥 ∈ 𝒦

Most convex optimization problems can be transformed into a (convex) conic program



Implicitly Differentiating a Conic Program
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𝑥⋆ = argmin
"

𝑐#𝑥

subject to 𝑏 − 𝐴𝑥 ∈ 𝒦

Find 𝑧⋆ s.t. ℛ 𝑧⋆, 𝜃 = 0 where 𝑧⋆ = [𝑥⋆, … ] and 𝜃 = {𝐴, 𝑏, 𝑐}

Implicitly differentiating ℛ gives 𝐷> 𝑧⋆ = − 𝐷=ℛ 𝑧⋆ J<𝐷>ℛ 𝑧⋆

[e.g. S7 of my thesis]

[Conic Optimality]



Some Applications
Learning hard constraints (Sudoku from data)

Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)

Game theory (differentiable equilibrium finding)

RL and control (differentiable control-based policies)

Meta-learning (differentiable SVMs)

Energy-based learning and structured prediction (differentiable inference)
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From the softmax to soft/differentiable top-k
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[Constrained softmax, constrained sparsemax, Limited Multi-Label Projection]

𝑦⋆ = argmin
(

−𝑦0𝑥 − 𝐻1(𝑦)

subject to 0 ≤ 𝑦 ≤ 1
10𝑦 = 𝑘

𝑦⋆ = argmin
(

−𝑦0𝑥 − 𝐻(𝑦)

subject to 0 ≤ 𝑦 ≤ 1
10𝑦 = 1

Vision application: End-to-end learn the top-k recall or predictions



Optimization layers need to be carefully implemented
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Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �


�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t
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0

�
Ct+1 F

>
t+1

Ft+1

. . .

3
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2
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...
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?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2
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ct
ft
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ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.
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Why should practitioners care?
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Differentiable convex optimization layers

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 18

NeurIPS 2019 (and officially in CVXPY!)
Joint work with A. Agrawal, S. Barratt, S. Boyd, S. Diamond, J. Z. Kolter

locuslab.github.io/2019-10-28-cvxpylayers



A new way of rapidly prototyping optimization layers
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…Inputs Loss
cvxpy optimization layer

!"#$ = argmin
,

-.(!, !")
s.t. ! ∈ ∁.(!")

Backprop

…

Parameters

Variables

Constants

Canonicalized
Cone Program

argmin
7

89:
s.t. ;: ≼= >

Problem

Objective
Constraints

Cone Program
Solution

Original Problem
Solution



This Talk
Foundation: Differentiable convex optimization

Differentiable continuous control
Differentiable model predictive control
Differentiable cross-entropy method
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Should RL policies have a system dynamics model or not?

Model-free RL
More general, doesn’t make as many assumptions about the world
Rife with poor data efficiency and learning stability issues

Model-based RL (or control)
A useful prior on the world if it lies within your set of assumptions

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 21

State Action

Policy Neural 
Network(s)

Future 
Plan

System 
Dynamics



Model Predictive Control
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Known or learned from data



The Objective Mismatch Problem
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Dynamics !" Policy #"(%) Environment

State Transitions RewardTrajectories

Training: Maximum Likelihood Objective Mismatch

Control Interacts

Responses



Differentiable Model Predictive Control
A	pure	planning	problem	given	(potentially	non-convex)	cost and	dynamics:
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𝜏#:3⋆ = argmin
4!:#

b
5

𝐶%(𝜏5)

subject to 𝑥# = 𝑥init
𝑥5"# = 𝑓% 𝜏5
𝑢 ≤ 𝑢 ≤ 𝑢

Cost

Dynamics

where	𝜏! = {𝑥! , 𝑢!}

Idea: Differentiate	through	this	optimization	problem



Differentiable Model Predictive Control
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Layer z"… MPC Layer …

A lot of data Model Predictions Loss

What can we do with this now?
Augment neural network policies in model-free algorithms with MPC policies
Replace the unrolled controllers in other settings (hindsight plan, universal planning networks)
Fight objective mismatch by end-to-end learning dynamics
The cost can also be end-to-end learned! No longer need to hard-code in values



Approach 1: Differentiable MPC/iLQR
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Can differentiate through the chain of QPs or just the last one if it’s a fixed point



Differentiating LQR with LQR
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Solving LQR with dynamic Riccati recursion efficiently solves the KKT system

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)
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Parameters: ✓ = {C, c, F, f}
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Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)
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where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are
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where ⌦ is the outer product operator, and d
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We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.
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Backwards Pass: Implicitly differentiate the LQR KKT conditions:

where

Just another LQR problem!



Approach 2: The Cross-Entropy Method
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Iterative sampling-based optimizer that:

1. Samples from the domain
2. Observes the function’s values
3. Updates the sampling distribution

SOTA optimizer for control and model-based RL



The Differentiable Cross-Entropy Method (DCEM)

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 29

Differentiate backwards through the sequence of samples
- Using differentiable top-k (LML) and reparameterization

Useful when a fixed point is hard to find, or when 
unrolling gradient descent hits a local optimum

A differentiable controller in the RL setting
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sites.google.com/view/diff-cross-entropy-method

DCEM fine-tunes highly non-convex controllers

https://sites.google.com/view/diff-cross-entropy-method/home


DCEM can exploit the solution space structure
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Full Domain

Manifold of
Optimal Solutions

𝑥⋆ = argmin
/∈ 1,2 !

𝑓 𝑥

Latent Manifold
of Optimal Solutions
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• Differentiable QPs: OptNet [ICML 2017]
• Differentiable Stochastic Opt: Task-based Model Learning [NeurIPS 2017]
• Differentiable MPC for End-to-end Planning and Control [NeurIPS 2018]
• Differentiable Convex Optimization Layers [NeurIPS 2019]
• Differentiable Optimization-Based Modeling for ML [Ph.D. Thesis 2019]
• Differentiable Top-k and Multi-Label Projection [arXiv 2019]
• Objective Mismatch in Model-based Reinforcement Learning [L4DC 2020]
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