On differentiable optimization

for control and vision

Brandon Amos e Facebook Al Research

Joint with Akshay Agrawal, Shane Barratt, Byron Boots, Stephen Boyd, Roberto Calandra, Steven Diamond, Priya
Donti, lvan Jimenez, Zico Kolter, Vladlen Koltun, Nathan Lambert, Jacob Sacks, Omry Yadan, and Denis Yarats

This Talk

Foundation: Differentiable convex optimization

Differentiable continuous control
Differentiable model predictive control
Differentiable cross-entropy method

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control

Can we throw big neural networks at every problem?

(Maybe) Neural networks are soaring in vision, RL, and language

- N~

)

{ AGl: A pile of linear algebra?\\

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 3

Optimization-Based Modeling for Machine Learning

1 Model [_J —
)
{ S ¥ Optimization Layer - - |
)
{ Ziv1 = argmin fg(z,z;) \

Z
subjectto z € Cy(z, z;)

« Adds domain knowledge and hard constraints to your modeling pipeline
» Integrates and trains nicely with your other end-to-end modeling components
« Applications in RL, control, meta-learning, game theory, optimal transport

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control

Optimization Layers Model Constraints

True Constraint (Unknown to the model)

Example 1 Example 2

Example 3 Example 4

. Constraint Predictions During Training

Example 1 Example 2

Example 3 Example 4

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control

Optimization Perspective of the ReLU

Proof [S2 of my thesis]: Comes from first-order optimality

y = max{0, x}

L |

*

y*= argmin ||y — x||3
y
subjectto y =0

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 6

Optimization Perspective of the Sigmoid

Proof [S2 of my thesis]: Comes from first-order optimality

1 1.0 ¢
1+ exp {—x) 0.8

0.6
Y
0.4

y

y* = argmin —y'x — H,(y) o2t
y
subjectto 0 <y <1 0.0

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 7

Optimization Perspective of the Softmax

Proof [S2 of my thesis]: Comes from first-order optimality

exp x

y:

2; exp X;

|

*

y* = argmin —y'x — H(y)
y

subject to
1Ty =1

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control

How can we generalize this?

Zip1 = argmin fo(z,z;)
Z

subjectto z € Cy(z, z;)

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control

The Implicit Function Theorem

[Dini 1877, Dontchev and Rockafellar 2009]

Given g(x,y) and f(x) = g(x,y"), where
y' € {y:g(x,y) = 0} |

How can we compute D,.f (x)?

The Implicit Function Theorem gives

D.f(x) = —Dyg(x, () Dyg(x, f(x))

under mild assumptions

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 10

Implicitly Differentiating a Quadratic Program

[OptNet] We only consider convex QPs

1
x* = argmin ExTQx +p'x
X

subjectto Ax =b Gx<h

4
4

Impilicitly differentiating R gives Dy (z*) = —(DZ:R(Z*))_lD@R(z*)

[IKKT Optimality]
Find z* s.t. R(z*,0) = 0

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control

11

Cones and Conic Programs

Most convex optimization problems can be transformed into a (convex) conic program

x* = argmin c'x
X
subjectto b —Ax € K
Zero: {0}
Free: R™
Non-negative: R}
Second-order {(t,x) € Ry xXR"|||x]|], < t}

Semidefinite: S%
Exponential: {(x,y,z) € R3|ye*Y < z,y > 0} U R_x{0}xR,

Cartesian Products: K = K X -+ XX,

0

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control

12

Implicitly Differentiating a Conic Program

[e.g. S7 of my thesis]
x* = argmin c'x
X

subjectto b —Ax € K

4
4

Impilicitly differentiating R gives Dy (z*) = —(DZ:R(Z*))_lD@R(z*)

[Conic Optimality]
Find z* s.t. R(z*,0) = 0

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control

13

Some Applications

Learning hard constraints
Modeling projections
Game theory

RL and control
Meta-learning

Energy-based learning and structured prediction

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 14

From the softmax to soft/differentiable top-k

[Constrained softmax, constrained sparsemax, Limited Multi-Label Projection]

Vision application: End-to-end learn the top-k recall or predictions

* *

y* = argmin —y'x — H(y) y* = argmin —y'x — Hp(y)
y # y
subject to subject to

=1 1Ty =k

sigmoid

011 111

001

1010

- - - - - e - ---

2110

000 100

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 15

Optimization layers need to be carefully implemented

dQz* + Qdz + dg + dATv*+

T ~T * invQ_AT = A.transpose(l, 2).lu_solve(*Q_LU)
ATdy +dGT X+ GTd) =0 Q A G dﬂ? Vel A_invQ_AT = torch.bmm(A, invQ_AT)
dAZ + Ad db— 0 A 0 0 ’;‘ - — 0 G_invQ_AT = torch.bmm(G, invQ_AT)
VA Z — = ~
D(G * h,)d)\ + D()*)(dG * + Gd . dh) . 0 G O 0 d; 0 LU_A_invQ_AT = lu_hack(A_invQ_AT)
z z z — P_A_invQ_AT, L_A_invQ_AT, U_A_invQ_AT = torch.lu_unpack(*
T T T T P_A_invQ_AT = P_A_invQ_AT.type_as(A_invQ_AT)
Q G A dz —dQz* —dgqg — dG* * —dA* V*
DG D(Gz*—h) 0| [d\]| = D(M*)dGz* + D(*)dh T h T A T A
() (Z =) = - () 2"+ () U_A_invQ_AT_inv = CP_A_invQ_AT.bmm(L_A_invQ_AT)
A 0 0 dv —dAz* + db).1lu_solve(*LU_A_invQ_AT)
K S_LU_21 = G_invQ_AT.bmm(U_A_invQ_AT_inv)
- ~ T = G_invQ_AT.transpose(l, 2).lu_solve(*LU_A_invQ_AT)
Tt A T A S_LU_12 = U_A_invQ_AT.bmm(T)
i o E E T T . 7 i :] 1 ’ . S_LU_22 = torch.zeros(nBatch, nineq, nineq).type_as(Q)
e Rt R R : : Vol = =(d.z" + zd V.0 =d S_LU_data = torch.cat((torch.cat((S_LU_11, S_LU_12), 2),
5 IC;: L I 0 5 I\t: ;t @ 2(; .) 1 ‘ torch.cat((S_LU_21, S_LU_22), 2)),
S O S O S t | — _ t — — — il
E —I| C F | 7_€+1 B Ct+1 VAK duz + deT T be d,, S_LU_pivots[:, :neq] = aU_A_ian_AT[lj
0 t+1 t+1)‘t—i-l fr+1 Vce = D(/*)(d,\z -+)\dz) Vil = —D(/*)d)\
______________________ Foa 0 ; . R -= G_invQ_AT.bmm(T)
C T i a1 Y. . 1
; ‘ =@ et ered) o—=d, [&][Q ¢TDOY) AT [V
ol [Vt : Ct dy| = |G D@Gz*—h) 0 0
>\t O ag — * ® 7_* _|_)* ® d* ag — d* dl, A 0 0 O
. . OF, At41 t t+1 Tt 8ft At

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 16

Why should practitioners care?

dQz* + Qdz + dg + dATv*+ L

, T *) invQAT = A.t (1, 2).lu_solve(*Q_LU)
ATy +d6Tx + GTar—0 |@ A G s Vol | ey say
dAz* + Adz — db = 0 {1 0 0 i‘ = — 0 G_invQ_AT = torch.bmm(G, invQ_AT)
D(G2* — h)dA + D LGd:—dny—o LG 0 0 b 0 LUA{VQAT = u_hack

P_A_iNVQAT, LA~ _A_invQ_AT = torch.lu_unpack(*
P_A_invQ_AT™ AT . type_as(A_invQ_AT)

Q GT d 2 —dQz* — dg — dGT) * — dATV*
* * g WU_A_inVQ_AT[0]
D(A*)G D(Gz*—h) 0 —D(A*)dGz* + D(A*)dh _WVQAT_inv = (P_A_invQ_AT.bmm(L_A_invQ_AT)
A 0 0 dv —dAz* <+ db).lu_solve(*LU_A_invQ_AT)
K S_LU_21 = G_invQ_AT.bmm(U_A_invQ_AT_inv)
% ~ T = G_invQ_AT.transpose(l, 2).lu_solve(*LU_A_invQ_AT)
T At Teql At41 S_LU_12 = U_A_invQ_AT.bmm(T)
| 1 1T -] : S_LU_22 = torch.zeros(nBatch, nineq, nineq).type_as(Q)
B e R L . : S_LU_data = torch.cat((torch.cat((S_LU_11, S_LU_12), 2),
R [—I 0] | I\t* s torch.cat((S_LU_21, S_LU_22), 2)),
********* - S 4 I S T*tl = +vd! Vil - 13U -
t+ ivots[:, : = i
o] cn rL o PeL— D(N)(dn" + MdT) Vil = —D >
______________________ Fo 0 : ~<)_AT. bmm(T)

1 oY
== (d&r, @7 + 77 ®@dy},) — =d}, d. Q G D R
K ’ %;t dx| = — |G D(Gz*—h
d, A 0
o7, ~ D ®T¢ H A @dn, a5, ~ %

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 17

Differentiable convex optimization layers

NeurlPS 2019 (and officially in CVXPY)
Joint work with A. Agrawal, S. Barratt, S. Boyd, S. Diamond, J. Z. Kolter

{(Xpy | () PyTorch

x*(0) = argmin f(x;0)

bj c ;0) <0
subject to "glgcc’ 0% =0 q Tensor

locuslab.github.i10/2019-10-28-cvxpylayers

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control

18

A new way of rapidly prototyping optimization layers

Backprop

cvxpy optimization layer

Inputs [C= ++E=p [~ .y, —argmin forzp | *" 59| Loss

Z

s.t. z € Cg(z;)

Parameters Canonicalized
Problem Cone Program E— —
. X . one rogram rlglna roblem
Variables .
rl Objective . T Solution > Solution E?
Constraints arg}rcmn X
Constants st. Ax <y b

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 19

This Talk

Differentiable continuous control
Differentiable model predictive control
Differentiable cross-entropy method

Brandon Amos

Differentiable Optimization-Based Modeling and Continuous Control

20

Should RL policies have a system dynamics model or not?

[Policy NEWTE] '

Network(s)

w System . Future

| Dynamics Plan |

Model-free RL
More general, doesn’t make as many assumptions about the world
Rife with poor data efficiency and learning stability issues

Model-based RL (or control)
A useful prior on the world if it lies within your set of assumptions

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 21

Known or learned from data

Brandon Amos

System
Dynamics

Initial State

Model Predictive Gontrol

Model Predictive Control

Finds an optimal future trajectory

> Optimal actions
to take next

Differentiable Optimization-Based Modeling and Continuous Control

22

The Objective Mismatch Problem

Control

—>

Interacts

—P | Environment

Training: Maximum Likelihood

POliCy Tlg (X)

Objective Mismatch ¢y Responses
——

Trajectories | State Transitions

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 23

Brandon Amos

Differentiable Model Predictive Gontrol

A pure planning problem given cost and dynamics:

(TI:T = argmin Z Co(T4)|Cost

subject to x; = Xjpjt

Xe+1 = |fp () Dynamics
usu<u
~ ,

_

Idea: Differentiate through this optimization problem

Differentiable Optimization-Based Modeling and Continuous Control

24

Differentiable Model Predictive Control
Y Model [—>

i
- m N — L~

What can we do with this now?

Augment neural network policies in model-free algorithms with MPC policies
Replace the unrolled controllers in other settings

Fight objective mismatch by end-to-end learning dynamics
The cost can also be end-to-end learned! No longer need to hard-code in values

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control

25

Brandon Amos

Approach 1: Differentiable MPC/iLQR

Can differentiate through the chain of QPs or just the last one if it’s a fixed point

QP lterate i
— T
t

T1:T
subjectto x; = x4t

Xt+1 — fel (7¢)
usu<su

Differentiable Optimization-Based Modeling and Continuous Control

260

Differentiating LQR with LQR

Solving LQR with dynamic Riccati recursion efficiently solves the KKT system

K
Tt At . Tt4+1 >\t—|—1_
o U oy c
B L s Y R Y I A
1| T | |G
0] Crrr P A Jt+1
______________________ Foyr : :

Backwards Pass: Implicitly differentiate the LQR KKT conditions:

o 1, . o a0 J* v,
aCt - 5 (dn QT+ T D dn) a_ct - th &cimt B d)\o Whel’e K i{t - — 7O—t
ol . l4 ¢

a_}wt - d§t+1 ® Tt* +)\:-i-l ® th a_ft - d;t

Just another LQR problem!)

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control

Approach 2: The Cross-Entropy Method

lterative sampling-based optimizer that:

1. Samples from the domain
2. Observes the function’s values
3. Updates the sampling distribution

SOTA optimizer for control and model-based RL

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control

28

The Differentiable Cross-Entropy Method (DCEM)

Differentiate backwards through the sequence of samples
- Using differentiable top-k (LML) and reparameterization

Useful when a fixed point is hard to find, or when
unrolling gradient descent hits a local optimum

A differentiable controller in the RL setting

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control

29

DCEM fine-tunes highly non-convex controllers

51tes qooqle com/v1ew/d1ff —Cross-— entroov method

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control

30

https://sites.google.com/view/diff-cross-entropy-method/home

DCEM can exploit the solution space structure

CEM over the full action space
Iteration 0 Samples Iteration 3 Samples Iteration 6 Samples Iteration 9 Samples

x* = argmin f(x)

x€[0,1]N P
Full Domain S
ManifOId Of R Tirr.1esltep o I Time;tep I h I Times'tep | B | Time;tep

Optimal Solutions

DCEM over the latent action space
Iteration 0 Samples Iteration 3 Samples Iteration 6 Samples Iteration 9 Samples

Controls

Timestep Timestep Timestep

Latent Manifold
of Optimal Solutions

Latent Dim 2

Latent Dim 1 Latent Dim 1 Latent Dim 1 Latent Dim 1

Brandon Amos Differentiable Optimization-Based Modeling and Continuous Control 31

Differentiable Optimization-Based Modeling

and Continuous Control

YW brandondamos

Brandon Amos e Facebook Al Research ‘B bamos gi thub.io

« Differentiable QPs: OptNet [I[CML 2017]

 Differentiable Stochastic Opt: Task-based Model Learning [NeurlPS 2017]
« Differentiable MPC for End-to-end Planning and Control [NeurlPS 2018]
 Differentiable Convex Optimization Layers [NeurlPS 2019]

« Differentiable Optimization-Based Modeling for ML [Ph.D. Thesis 2019]
 Differentiable Top-k and Multi-Label Projection [arXiv 2019]

» Obijective Mismatch in Model-based Reinforcement Learning [L4DC 2020]
 Differentiable Cross-Entropy Method [ICML 2020]

Joint with Akshay Agrawal, Shane Barratt, Byron Boots, Stephen Boyd, Roberto Calandra, Steven Diamond, Priya
Donti, lvan Jimenez, Zico Kolter, Vladlen Koltun, Nathan Lambert, Jacob Sacks, Omry Yadan, and Denis Yarats

https://arxiv.org/abs/1703.00443
http://papers.nips.cc/paper/7132-task-based-end-to-end-model-learning-in-stochastic-optimization
http://papers.nips.cc/paper/9152-differentiable-convex-optimization-layers
https://github.com/bamos/thesis
https://arxiv.org/abs/1906.08707
https://arxiv.org/abs/2002.04523
https://arxiv.org/abs/1909.12830

