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Introduction

e \We introduce a new neural network architecture: e Structured prediction e Can train networks using framework similar to max-

— Input-Convex Neural Networks (ICNNs) — Similar model to Belanger and McCallum [1] (non- margin structured prediction [4, 3]
e Definition: Scalar-valued neural network f(x;6) convex deep networks for structured prediction) e E.g., in structured prediction setting, want to find 6

— f is convex in the input x — Network takes input and output pairs: f(x,y;0) such that for all training inputs (x;, y;)

— (f is not convex in th.e parameters 0 = {W;, bz}) — Inference for an input z: F(z5,y5:0) < min (f(z5,9:0) — Alys, v)) | . | |
e Model allows global optimization over some of the in- R . ycy e

puts to the network, given fixed values for other inputs J = arg;nmf(x,y; 0) o A(yi,y) is a margin-scaling term e 2-layer linear ICNN with ReLU (200 units per layer)
e Many existing neural-network architectures can be — Margin for the inequality when y; different from y e ICNNs can learn non-convex decision boundaries

“easily’” made input-convex (for ICNNs, a convex, thus globally solvable problem) — In multi-class classification: ) is simplex and

e Exemplars in learning Ay, y) = yT(l — ;)
— Same setting as above, but also inference over x e Note: training network is not a convex problem Experiment; Fxem p|ar Learning
Input—Convex Neural Networks f(xy,y =er;0) < m{gﬂ f(z,y = ex;0) Subgradient method for structured prediction [2]:

Consider each class in a fully connected MNIST ICNN

- S e Training example x;, y; _
Typical ICNN model: e Data imputation . colve ; i ar;mmz v Feay:6) — Alye.y) _ Network from MNIST results with 1.32M params
— Infer missing values from values that are present . A é;éy ; t“ ’ 2 — min, f(z,y = k: 0) of the trained network on digits:
@ e ) — 47 = argmin,_ f(xz,2-7;0) e If margin is violated, update
X 0)21 1)22 2)2’3—)---—)2% . . * *
N . e Reinforcement learning 0 < Py 0 —a(N+Vof(r:,y:,0) — Vof(ri,y™;0))]
0§ ] " et Q002 fctin e s geted) UL e . et 1, ot che nomnegativeor
Wi continﬁous action spaceg) IS aaconvjexy problem thant * Regularization idea: Jointly optimize y and
“Work in orogress — In classification, average the examples for each class
Zi+1 = gi (Wi(Z)Zi + Wz-(x)x + bz’) 1=0,...,k—1 PIog _ D _ — Represent the exemplar for class ¢ as
F(2:0) = 2 ICNN Inference Experlment: MNIST Classification e Use margin scaling term A(z!,z) = X||z — |2
Fully Connected (600L-600L) — Requires that we use f = f(x,y)+ Z||x||5 to main-
e z; are the Ia_\yer actiyati?ns (With_ZO = 0) e In general, inference requires optimization over some F_leEdforward (837k Params) ) ICNN (1.32M Params) Mli?;gﬁogl\;es);li;}i/cgt::r? 3\:3?:;6:1 w;;?rleen;en:)r:ot-)lem
® g; are non—lmez?r activation f““_Ct'O“S | inputs given other inputs (always a convex problem!) ] — Train — Test| _ \§ — Train — Test I ) 110 P I gci 198
e Also supports linear operations like convolutions — E.g. structured prediction: § = argmin,, f(x,y; 0) g . g “\‘j:_ — ~— — [n €ach mini atch, learn a exemplars an
. . Y ~—— classification samples
e For ICNNs with RelLUs, max pooling, fully connected 107 a0 =0 eo o 1075 : . —

Proposition 1. The function f is convex in x provided _ _ _ C o ooch oo 107, :
(2) . . units, and convolutions, inference is a linear program _ ~— z
that all W, ., are non-negative, and all functions g; are o LeNet (20C-MP-50C-MP-500L, 5 x 5 conv) g T~
- ' . T . - — Train — Test |
convex and non-decreasing y min 2 St ziq > Wz’(Z) 2 + Wi(w) ; b Vi 1(|;eedforward (430k Params) - ICNN (826k Params) oS e o N
: . 2Ly 2k _ i ] : | C | | ] Epoch
¢ Many common non-linearities g; (e.g., (PL)ReLU and >0, Vit k s s — e Network learns exemplars at the expense of accuracy
max-pooling) are already convex and non-decreasing L= a B -
® Non-negativity of W(Z) terms IS a notable restriction Solution approaches: 107 5 20 40 60 0 100 ¢ 100 200 300 400 500 600 700
. . . i . . . . . . Epoch Epoch
e Joint convexity in all inputs also restrictive (can be e Full LP formulation (variable for each hidden unit) Error summary at last iteration:
extended to partial convexity, which then generalizes — ADMM or an off-the-shelf solver (like ECOS) Train Test
ICNNs and traditional feedforward networks) ¢ Grad|en.t—based methods | Feedforward Fully Connected | 3.3-107° 0.029 [1] D. Belanger and A. McCallum. “Structured Prediction Energy
— Gradient descent, bundle and cutting plane methods LeNet | 0.010 0012 Networks”. In: arXiv:1511.06350 (2015).
[2] N. Ratliff, J. Bagnell, and M. Zinkevich. “(Approximate) Sub-
Inference in a 600L-600L ICNN: ICNN Fu”y Connected | 0.0075 0.034 gradient Methods for Structured Prediction”. In: ICAIS. 2007.
— ADMM — PGD — Bundle — ECOS LeNet | 0.010 0.021 [3] B. Taskar et al. “Learning structured prediction models: A
%8; 3 | | | | T T T . Iarge margin approach”. In: ICML. 2005.
o | | | | r r s N CUDA LeNet runtimes: [4] |. Tsochantaridis et al. “Large margin methods for structured
éigjf e Training minibatch with 128 instances and interdependent output variables”. In: JMLR (2005).
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