
Input-Convex Deep Networks
Brandon Amos and J. Zico Kolter School of Computer Science, Carnegie Mellon University

Introduction

• We introduce a new neural network architecture:
– Input-Convex Neural Networks (ICNNs)

• Definition: Scalar-valued neural network f(x; θ)
– f is convex in the input x
– (f is not convex in the parameters θ = {Wi, bi})

• Model allows global optimization over some of the in-
puts to the network, given fixed values for other inputs

• Many existing neural-network architectures can be
“easily” made input-convex

Input-Convex Neural Networks

Typical ICNN model:
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f(x; θ) = zk

• zi are the layer activations (with z0 ≡ 0)
• gi are non-linear activation functions
• Also supports linear operations like convolutions

Proposition 1. The function f is convex in x provided

that allW
(z)
1:k−1 are non-negative, and all functions gi are

convex and non-decreasing

• Many common non-linearities gi (e.g., (PL)ReLU and
max-pooling) are already convex and non-decreasing

• Non-negativity of W (z) terms is a notable restriction
• Joint convexity in all inputs also restrictive (can be

extended to partial convexity, which then generalizes
ICNNs and traditional feedforward networks)

ICNN Use Cases

• Structured prediction
– Similar model to Belanger and McCallum [1] (non-

convex deep networks for structured prediction)
– Network takes input and output pairs: f(x, y; θ)
– Inference for an input x:

ŷ = argmin
y

f(x, y; θ)

(for ICNNs, a convex, thus globally solvable problem)

• Exemplars in learning
– Same setting as above, but also inference over x

f(x∗k, y = ek; θ) ≤ min
x
f(x, y = ek; θ)

• Data imputation*

– Infer missing values from values that are present
– x̂I = argminxI

f(xI , x¬I ; θ)

• Reinforcement learning*

– Represent Q(s, a; θ) function as a (negated) ICNN
– Finding best action argmaxaQ(s, a; θ) (even for

continuous action spaces) is a convex problem
*Work in progress

ICNN Inference

• In general, inference requires optimization over some
inputs given other inputs (always a convex problem!)
– E.g. structured prediction: ŷ = argminy f(x, y; θ)

• For ICNNs with ReLUs, max pooling, fully connected
units, and convolutions, inference is a linear program

min
y,z1,...,zk

zk s. t. zi+1 ≥W (z)
i zi +W

(xy)
i
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x
y

]
+ bi, ∀i

zi ≥ 0, ∀i 6= k

Solution approaches:
• Full LP formulation (variable for each hidden unit)

– ADMM or an off-the-shelf solver (like ECOS)
• Gradient-based methods

– Gradient descent, bundle and cutting plane methods

Inference in a 600L-600L ICNN:
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ICNN Learning

• Can train networks using framework similar to max-
margin structured prediction [4, 3]

• E.g., in structured prediction setting, want to find θ
such that for all training inputs (xi, yi)

f(xi, yi; θ) ≤ min
y∈Y

(f(xi, y; θ)−∆(yi, y))

• ∆(yi, y) is a margin-scaling term
– Margin for the inequality when yi different from y
– In multi-class classification: Y is simplex and

∆(yi, y) = yT (1− yi)
• Note: training network is not a convex problem

Subgradient method for structured prediction [2]:
• Training example xi, yi
• Solve y? = argminy∈Y f(xi, y; θ)−∆(yi, y)
• If margin is violated, update

θ ← P+ [θ − α (λθ +∇θf(xi, yi, θ)−∇θf(xi, y
?; θ))]

where P+ projects W
(z)
1:k−1 onto the non-negative or-

thant

Experiment: MNIST Classification
Fully Connected (600L-600L)

Feedforward (837k Params)
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LeNet (20C-MP-50C-MP-500L, 5× 5 conv)
Feedforward (430k Params)
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Error summary at last iteration:
Train Test

Feedforward Fully Connected 3.3 · 10−5 0.029
LeNet 0.010 0.012

ICNN Fully Connected 0.0075 0.034
LeNet 0.010 0.021

CUDA LeNet runtimes:
• Training minibatch with 128 instances

Feedforward 0.038 ± 0.006 seconds
ICNN 0.302 ± 0.010 seconds

Experiment: Synthetic Classification

• 2-layer linear ICNN with ReLU (200 units per layer)
• ICNNs can learn non-convex decision boundaries

Experiment: Exemplar Learning

• Consider each class in a fully connected MNIST ICNN
– Network from MNIST results with 1.32M params
– minx f(x, y = k; θ) of the trained network on digits:

• Regularization idea: Jointly optimize y and x
– In classification, average the examples for each class
– Represent the exemplar for class i as xi∗

• Use margin scaling term ∆(xi∗, x) = γ
2 ||x− x

i
∗||22

– Requires that we use f̃ ≡ f(x, y)+ γ
2 ||x||

2
2 to main-

tain convexity in the augmented inference problem
MNIST classification with exemplar learning:
– In each minibatch, learn all 10 exemplars and 128

classification samples
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• Network learns exemplars at the expense of accuracy
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