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Big picture

What are the “atomic operations” or building blocks of modern Al systems”?

The current situation: Matrix-vector products (dense or sparse/structured),
(sub)differentiable non-linear functions, random sampling

This talk: We should consider (convex) optimization as another potential
atomic operation, to be composed with others

Note: we already use optimization in the learning procedures, but we should
also consider it as an operation for inference and control

This is not a new idea: some of the original work in neural networks
considered them composition with more complex, optimization-based
prediction (c.f. structured prediction)
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Applications of Optimization for Inference

Structured prediction: define a network over X XY and predict via
$(x) = argminy, f(x,y; 6)

Data imputation: build a network over only over Y, given y; populate the
remaining entries via

y7 = argminy,. f(y7,y7; 6)

Continuous action reinforcement learning: Represent Q function as
Q*(s,a) = —f(s,a; 0), policy becomes
n*(s) = argming,f (s, a; 0)
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Talk Overview

> 1. Our Contribution: Input Convex Neural Networks
2. Challenges: Inference and Learning

3. Experiments
1. Synthetic
2. Multi-label Classification
3. Image Completion
4. Continuous—Action Q-Learning
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Input Convex Neural Networks (ICNNS)

Scalar-valued network f(x,y; 8) such that f is convex in y for all values of
x (note that these networks are still not convex in 8 = {W;, b;})

ICNNs can efficiently optimize over some inputs to the network given
other inputs

Efficiently captures dependencies in the output space for prediction

It turns out, we don’t need very many restrictions on the network to
achieve this property
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Applications of Optimization for Inference

With ICNNs: All of these problems are
convex, “easy” to solve globally

Structured prediction: define a network over X xY and predict via
y(x) = argmin,, f(x,y;0)

Data imputation: build a network over only over Y, given y; populate the
remaining entries via

y7 = argminy,. f(y7,y7; 6)

Continuous action reinforcement learning: Represent Q function using
ICNN Q*(s,a) = —f(s,a;0), policy becomes
n*(s) = argming,f (s, a; 0)
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Example Networks

ICNN for structured prediction:
9(x) = argmin,, f(x,y; 6)
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ICNN for Q learning:
n*(s) = argmin, — Q(s,a; 0)
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How to achieve input convexity?

Most networks can be “trivially” modified to guarantee input convexity

Consider simple feedforward RelLU network:
Ziy1= maX{O, WiZi + bi}, [ = 1, vy k
f;0) =211, 1=y

f is convex in y provided that the W;are non-negative fori > 1

More generally, any activation function that is convex and non-decreasing
also has this property.
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Is convexity restrictive?

Yes (by definition, the functions are restricted to be convex), but not that
bad in practice

E.g., we can trivially capture any feedforward network f (x) with the

5 2
network f(x,y) = (y — f(x))

More complex convex portion adds additional structure over y, which can
still be “easily” optimized over

We'll see more evidence for this later
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Challenges for ICNNs

Inference: how do we efficiently perform the optimization?
y*(x; 8) = argmin,, f(x,y;0)

Learning: How do we train the network (find 8) such that it gives good
predictions?

n
minimizeg Z (i, y* (x5 0))
i=1
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Inference in ICNNs

In theory, inference in ICNNSs is just a linear program
min,, f(y;0) = miny, z Zy+1
St Ziy1 = WiZi + bi
z; =0 fori > 1
z1 =)y

This program has as many variables as hidden units in the network, exact
solution methods require that we invert the W;' W; matrices

Instead, exploit the fact that we can easily compute the gradient of
f(x,y; 8) with respect to y (this is just backprop), optimize using
gradient-based methods.

We found that the bundle method performs better than gradient descent
iNn some cases.
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Inference with the Bundle Method

Repeatedly minimize a lower bound on the function

Using convexity property to minimize more quickly than gradient descent

Boundary constraints are difficult, so we actually use an entropy penalty
fCx,y;0) +ylogy + (1 —y)log(l—y)
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ICNN Learning

Two possibilities for training networks

1. Max-margin structured prediction: enforce constraint that
f(x;,yi;0) < argminy, (f (x5, y;6) + A(y, v;))
Common structured prediction approach
Margin-scaling term A(y, y;) can be finicky

2. Direct argmin differentiation, directly compute
Vot (v, y* (x5 6))
Can be approximated by unrolling an optimization procedure
Plays nicely with bundle method and approximate optimization
May require some differential calculus (nothing too nasty)
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Results: toy example

Partially input convex neural network trained to classify points in 2D space

Features

Class Prediction

y(x) = argmin,, f(x,y;0)
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Only point to remember from this: convex energy function does not imply a
convex decision boundary; argmin operator is a powerful one
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Results: multi-label classification

Task: Predict tags for bibtex entries from bag of words features
Used in Belanger and McCallum, 2016: Structured Prediction Energy Networks

ICNNs almost recover the same performance as SPENs despite the convexity
restrictions

y(x) = argmin,, f(x,y;0)
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Results: image completion

Task: Predict the left side of the image given the right side. Used in Poon
and Domingos 2011; Sum-Product Networks

ICNN: DQN-like network over both input and output

y(x) = argmin,, f(x,y;0)
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ICNN: Bundle Entropy 833.0
ICNN: Gradient Descent 872.0
ICNN: Non-convex (GD) 850.9
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Results: continuous-action RL

Using Q-learning with entropy-regularized ICNN to represent Q function.
Comparing to DDPG [Lillicrap et al., 2016], and NAF [Gu et al., 2016]

NAF is particularly similar: also uses a value function that is convex in the
input, but uses a quadratic representation to guarantee this convexity

Table: Max (rolling) test reward obtained on
_ _ Gym continuous control tasks
Select actions with:

N . _ Task DDPG NAF ICNN
a*(s) = argming — Q(s, a;6) Ant 1000.00  999.03 1056.29
HalfCheetah 2909.77 2575.16 3822.99

State| s 2| w > w2 > - Uk Hopper 1501.33  1100.43 831.00

A N 96 @ 8)  Humanoid 524.09 5000.68  433.38

Action | Ll Lsl 2 Ls. 2o —sheal 5 & HumanoidStandup 134265.96 116399.05 141217.38

InvDoubPend 0358.81 9359.50 9359.41
a ) t InvPend 1000.00 1000.00  1000.00

Reacher -6.10 -6.31 -5.08

Swimmer 49.79 69.71 64.89

Walker2d 1604.18  1007.25  208.21
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The full TensorFlow source code to reproduce all of our experiments is
available online at https://github.com/locuslab/icnn
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