
Input Convex Neural Networks

Brandon Amos Lei Xu* J. Zico Kolter
Carnegie Mellon University

School of Computer Science
*Tsinghua University, work done while at CMU

ICML 2017

Big picture
What are the “atomic operations” or building blocks of modern AI systems?

The current situation: Matrix-vector products (dense or sparse/structured),
(sub)differentiable non-linear functions, random sampling

This talk: We should consider (convex) optimization as another potential
atomic operation, to be composed with others

Note: we already use optimization in the learning procedures, but we should
also consider it as an operation for inference and control

This is not a new idea: some of the original work in neural networks
considered them composition with more complex, optimization-based
prediction (c.f. structured prediction)

2ICML 2017 ICNNs: Amos, Xu, and Kolter

Applications of Optimization for Inference

Structured prediction: define a network over 𝒳×𝒴 and predict via
$𝑦(𝑥) = argmin! 𝑓(𝑥, 𝑦; 𝜃)

Data imputation: build a network over only over 𝒴, given 𝑦ℐ populate the
remaining entries via

$𝑦 ̅ℐ = argmin! ̅ℐ
𝑓 𝑦 ̅ℐ, 𝑦ℐ; 𝜃

Continuous action reinforcement learning: Represent 𝑄 function as
𝑄⋆ 𝑠, 𝑎 = −𝑓(𝑠, 𝑎; 𝜃), policy becomes

𝜋⋆ 𝑠 = argmin%𝑓 𝑠, 𝑎; 𝜃

3ICML 2017 ICNNs: Amos, Xu, and Kolter

Talk Overview
1. Our Contribution: Input Convex Neural Networks

2. Challenges: Inference and Learning

3. Experiments
1. Synthetic
2. Multi-label Classification
3. Image Completion
4. Continuous–Action Q-Learning

4ICML 2017 ICNNs: Amos, Xu, and Kolter

Input Convex Neural Networks (ICNNS)
Scalar-valued network 𝑓(𝑥, 𝑦; 𝜃) such that 𝑓 is convex in 𝑦 for all values of
𝑥 (note that these networks are still not convex in 𝜃 = {𝑊&, 𝑏&})

ICNNs can efficiently optimize over some inputs to the network given
other inputs

Efficiently captures dependencies in the output space for prediction

It turns out, we don’t need very many restrictions on the network to
achieve this property

5ICML 2017 ICNNs: Amos, Xu, and Kolter

Applications of Optimization for Inference

Structured prediction: define a network over 𝒳×𝒴 and predict via
$𝑦(𝑥) = argmin! 𝑓(𝑥, 𝑦; 𝜃)

Data imputation: build a network over only over 𝒴, given 𝑦ℐ populate the
remaining entries via

$𝑦 ̅ℐ = argmin! ̅ℐ
𝑓 𝑦 ̅ℐ, 𝑦ℐ; 𝜃

Continuous action reinforcement learning: Represent 𝑄 function using
ICNN 𝑄⋆ 𝑠, 𝑎 = −𝑓(𝑠, 𝑎; 𝜃), policy becomes

𝜋⋆ 𝑠 = argmin%𝑓 𝑠, 𝑎; 𝜃

6

With ICNNs: All of these problems are
convex, “easy” to solve globally

ICML 2017 ICNNs: Amos, Xu, and Kolter

Example Networks
ICNN for Q learning:

𝜋⋆ 𝑠 = argmin% − 𝑄 𝑠, 𝑎; 𝜃

ICML 2017 ICNNs: Amos, Xu, and Kolter 7

ICNN for structured prediction:
$𝑦(𝑥) = argmin! 𝑓(𝑥, 𝑦; 𝜃)

z1
W (x)

0 z2 zk
W (z)

1

W (x)
1

. . .

W (x)
k−1

z3
W (z)

2

W (x)
2

x

x u1

y z1

u2

z2 . . .

. . . uk−1

zk−1 zk

Figure 1: Left: A fully input-convex neural network (FICNN). Right: A partially input-convex
neural network (PICNN).

3.1 Fully input-convex neural networks120

To begin, we consider a fully convex, k-layer, fully connected ICNN, shown in Figure 1. This model121

defines a neural network over the input x using the architecture122

zi+1 = gi
⇣
W (z)

i zi +W (x)
i x+ bi

⌘
, i = 0, . . . , k � 1

f(x; ✓) = zk
(7)

where zi denote the layer activations (with z0,W
(z)
0 ⌘ 0), ✓ = {W (x)

0:k�1,W
(z)
1:k�1, b0:k�1} are the123

parameters, and gi are non-linear activation functions. The central result on convexity of the network124

is the following:125

Proposition 1. The function f is convex in x provided that all W (z)
1:k�1 are non-negative, and all126

functions gi are convex and non- decreasing.127

The proof is simple and follows from the fact that non-negative sums of convex functions are also128

convex and that the composition of a convex and convex non-decreasing function is also convex129

(see e.g. Boyd and Vandenberghe [12, 3.2.4]). The constraint that the gi be convex non-decreasing130

is not particularly restrictive, as current non-linear activation units like the rectified linear unit or131

max-pooling unit already satisfy this constraint. The constraint that the W (z) terms be non-negative132

are somewhat restrictive, but because the bias terms and W (x) terms can be negative, the network133

still has substantial representation power, as we will shortly demonstrate empirically.134

One notable addition in the ICNN are the “passthrough” layers that directly connect the input x135

to hidden units in deeper layers. Such layers are unnecessary in traditional feedforward networks136

because previous hidden units can always be mapped to subsequent hidden units with the identity137

mapping; however, for ICNNs, the non-negativity constraint subsequent W (z) weights restricts the138

allowable use of hidden units that mirror the identity mapping, and so we explicitly include this139

additional passthrough.2140

Other linear operators like convolutions can be included in ICNNs without changing the convex-141

ity properties. Indeed, modern feedforward architectures such as AlexNet [15], VGG [16], and142

GoogLeNet [17] with ReLUs [18] can be made input-convex with Proposition 1. In the experiment143

that follow, we will explore ICNNs with both fully connected and convolutional layers.144

3.2 Partially input-convex architectures145

The FICNN provides joint convexity over the entire input space, which indeed may be a restriction146

on the allowable class of models; indeed, neural networks derive much of their power from the fact147

that they are general function approximators. Furthermore, this full joint convexity is unnecessary148

in settings like structured prediction where the neural network is used to build a joint model over an149

input and output example space and only convexity over the outputs is necessary.150

In this section we propose an extension to the pure FICNN, the partially input-convex neural net-151

work (PICNN), that is convex only over some inputs to the network. As we will show, these networks152

generalize both traditional feedforward networks and FICNNs, and thus provide substantial repre-153

sentational benefits. In the following, keeping with the context of structured prediction, we will154

2Some passthrough layers have been recently explored in the deep residual networks [14], though these
differ from those of an ICNN as they only pass through hidden layers deeper in the network, whereas to
maintain convexity our passthrough layers can only apply to the input directly.

4

define a PICNN to be a network over (x, y) pairs f(x, y; ✓) where f is convex in y but not convex155

in x. Figure 1 illustrates one potential k-layer PICNN architecture defined by the recurrences156

ui+1 = g̃i(W̃iui + b̃i)

zi+1 = gi
⇣
W (uz)

i (ui � zi) +W (u)
i ui +W (z)

i zi +W (y)
i yi + bi

⌘

f(x, z; ✓) = zk

(8)

where ui 2 Rni and zi 2 Rmi denote the hidden units for the “x-path” and “y-path”, where y 2 Rp,157

and where � denotes the Hadamard product, the elementwise product between two vectors. The158

crucial element here is that unlike the FICNN, we only need the W (z) terms to be non-negative, and159

we can introduce arbitrary products between the ui hidden units and the zi hidden units. Although160

more general formulations are possible (e.g., we could involve arbitrary linear functions of the outer161

product uizTi , these would result in very large numbers of parameters, and can always be captured by162

above architecture by simply adding additional layers that contain more hidden units). The following163

proposition highlights the representational power of the PICNN.164

Proposition 2. The PICNN network with k layers can represent any FICNN with k layers and any165

purely feedforward network with k � 1 layers.166

Proof. To recover a FICNN we simply set the weights over the entire x path to be zero. We can167

recover a feedforward network by noting that a traditional feedforward network f̂(x; ✓) where f :168

X ! Y , can be viewed as a network with an inner product f(x; ✓)T y in its last layer (see e.g. [1]169

for more details). Thus, a feedforward network can be represented as a PICNN by setting the x170

path to be exactly the feedforward component, then having the y path be all zero except W (y)
k�2 = I171

(implying zk�1 = y) and W (uz)
k�1 = vec(I)T .172

Biconvex architectures Although we do not discuss it in detail here, we can also develop an173

intermediate model between the PICNN and FICNN that is not convex in (x, y) jointly, but which is174

convex in either x or y when the other variables are fixed. Such an architecture would be useful for175

e.g., the generative embedding model described above, since it would allow for efficient inference176

over either x or y given the other, but is less restrictive that requiring joint convexity.177

3.3 Convolutional architectures178

Convolutions are important to many visual structured tasks. We have left convolutions out to keep179

the prior ICNN notation light by using matrix-vector operations. ICNNs can be similarly created180

with convolutions by viewing the convolution as a linear operator.181

The construction of convolutional layers in ICNNs depend on the type of input and output space.182

If the input and output space are similarly structured (e.g. both spatial), the jth feature map of a183

FICNN layer i can be defined by184

zji+1 = gi
⇣
zi ⇤W (z)

i,j + (Sx) ⇤W (x)
i,j + (Sy) ⇤W (y)

i,j + bi,j
⌘

(9)

where the convolution kernels W are the same size and S scales the input and output to be the same185

size as the previous feature map.186

If the input space is spatial, but the output space has another structure (e.g. the simplex), the convo-187

lution over the output space can be replaced by a matrix-vector operation, such as188

zji+1 = gi
⇣
zi ⇤W (z)

i,j + (Sx) ⇤W (x)
i,j +B(y)

i,j y + bi,j
⌘

(10)

where the product B(y)
i,j y is a scalar.189

4 Prediction and learning in ICNNs190

A traditional feedforward neural network’s prediction is a forward pass and learning is based on191

gradient steps from a backward pass. In contrast, ICNN prediction is a convex optimization problem192

(2) and the learning shapes the objective to the task.193

5

Features

Class
Prediction

𝑓(𝑥, 𝑦; 𝜃)
State

Action

−𝑄(𝑠, 𝑎; 𝜃)

How to achieve input convexity?
Most networks can be “trivially” modified to guarantee input convexity

Consider simple feedforward ReLU network:
𝑧&'(= max{0,𝑊&𝑧& + 𝑏&}, 𝑖 = 1,… , 𝑘

𝑓 𝑦; 𝜃 = 𝑧)'(, 𝑧(= 𝑦

𝑓 is convex in 𝑦 provided that the 𝑊&are non-negative for 𝑖 > 1

More generally, any activation function that is convex and non-decreasing
also has this property.

8ICML 2017 ICNNs: Amos, Xu, and Kolter

Is convexity restrictive?
Yes (by definition, the functions are restricted to be convex), but not that
bad in practice

E.g., we can trivially capture any feedforward network F𝑓 𝑥 with the
network 𝑓 𝑥, 𝑦 = 𝑦 − F𝑓 𝑥

*

More complex convex portion adds additional structure over 𝑦, which can
still be “easily” optimized over

We’ll see more evidence for this later

9ICML 2017 ICNNs: Amos, Xu, and Kolter

Talk Overview
1. Our Contribution: Input Convex Neural Networks

2. Challenges: Inference and Learning

3. Experiments
1. Synthetic
2. Multi-label Classification
3. Image Completion
4. Continuous–Action Q-Learning

10ICML 2017 ICNNs: Amos, Xu, and Kolter

Challenges for ICNNs
Inference: how do we efficiently perform the optimization?

𝑦⋆ 𝑥; 𝜃 = argmin! 𝑓(𝑥, 𝑦; 𝜃)

Learning: How do we train the network (find 𝜃) such that it gives good
predictions?

minimize+ I
&,(

-

ℓ 𝑦&, 𝑦⋆ 𝑥&; 𝜃

11ICML 2017 ICNNs: Amos, Xu, and Kolter

Inference in ICNNs
In theory, inference in ICNNs is just a linear program

min! 𝑓 𝑦; 𝜃 = min!,/ 𝑧)'(
s.t. 𝑧&'(≥ 𝑊&𝑧& + 𝑏&

𝑧& ≥ 0 for 𝑖 > 1
𝑧(= 𝑦

This program has as many variables as hidden units in the network, exact
solution methods require that we invert the 𝑊&

0𝑊& matrices

Instead, exploit the fact that we can easily compute the gradient of
𝑓 𝑥, 𝑦; 𝜃 with respect to 𝑦 (this is just backprop), optimize using
gradient-based methods.

We found that the bundle method performs better than gradient descent
in some cases.

12ICML 2017 ICNNs: Amos, Xu, and Kolter

Inference with the Bundle Method
Repeatedly minimize a lower bound on the function

Using convexity property to minimize more quickly than gradient descent

Boundary constraints are difficult, so we actually use an entropy penalty
F𝑓 𝑥, 𝑦; 𝜃 + 𝑦 log 𝑦 + 1 − 𝑦 log(1 − 𝑦)

13ICML 2017 ICNNs: Amos, Xu, and Kolter

ICNN Learning
Two possibilities for training networks

1. Max-margin structured prediction: enforce constraint that
𝑓 𝑥&, 𝑦&; 𝜃 ≤ argmin! 𝑓 𝑥&, 𝑦; 𝜃 + Δ 𝑦, 𝑦&

Common structured prediction approach
Margin-scaling term Δ(𝑦, 𝑦&) can be finicky

2. Direct argmin differentiation, directly compute
𝛻+ℓ 𝑦&, 𝑦⋆ 𝑥&; 𝜃

Can be approximated by unrolling an optimization procedure
Plays nicely with bundle method and approximate optimization
May require some differential calculus (nothing too nasty)

14ICML 2017 ICNNs: Amos, Xu, and Kolter

Talk Overview
1. Our Contribution: Input Convex Neural Networks

2. Challenges: Inference and Learning

3. Experiments
1. Synthetic
2. Multi-label Classification
3. Image Completion
4. Continuous–Action Q-Learning

15ICML 2017 ICNNs: Amos, Xu, and Kolter

Results: toy example
Partially input convex neural network trained to classify points in 2D space

Only point to remember from this: convex energy function does not imply a
convex decision boundary; argmin operator is a powerful one

16ICML 2017 ICNNs: Amos, Xu, and Kolter

$𝑦(𝑥) = argmin! 𝑓(𝑥, 𝑦; 𝜃)

z1
W (x)

0 z2 zk
W (z)

1

W (x)
1

. . .

W (x)
k−1

z3
W (z)

2

W (x)
2

x

x u1

y z1

u2

z2 . . .

. . . uk−1

zk−1 zk

Figure 1: Left: A fully input-convex neural network (FICNN). Right: A partially input-convex
neural network (PICNN).

3.1 Fully input-convex neural networks120

To begin, we consider a fully convex, k-layer, fully connected ICNN, shown in Figure 1. This model121

defines a neural network over the input x using the architecture122

zi+1 = gi
⇣
W (z)

i zi +W (x)
i x+ bi

⌘
, i = 0, . . . , k � 1

f(x; ✓) = zk
(7)

where zi denote the layer activations (with z0,W
(z)
0 ⌘ 0), ✓ = {W (x)

0:k�1,W
(z)
1:k�1, b0:k�1} are the123

parameters, and gi are non-linear activation functions. The central result on convexity of the network124

is the following:125

Proposition 1. The function f is convex in x provided that all W (z)
1:k�1 are non-negative, and all126

functions gi are convex and non- decreasing.127

The proof is simple and follows from the fact that non-negative sums of convex functions are also128

convex and that the composition of a convex and convex non-decreasing function is also convex129

(see e.g. Boyd and Vandenberghe [12, 3.2.4]). The constraint that the gi be convex non-decreasing130

is not particularly restrictive, as current non-linear activation units like the rectified linear unit or131

max-pooling unit already satisfy this constraint. The constraint that the W (z) terms be non-negative132

are somewhat restrictive, but because the bias terms and W (x) terms can be negative, the network133

still has substantial representation power, as we will shortly demonstrate empirically.134

One notable addition in the ICNN are the “passthrough” layers that directly connect the input x135

to hidden units in deeper layers. Such layers are unnecessary in traditional feedforward networks136

because previous hidden units can always be mapped to subsequent hidden units with the identity137

mapping; however, for ICNNs, the non-negativity constraint subsequent W (z) weights restricts the138

allowable use of hidden units that mirror the identity mapping, and so we explicitly include this139

additional passthrough.2140

Other linear operators like convolutions can be included in ICNNs without changing the convex-141

ity properties. Indeed, modern feedforward architectures such as AlexNet [15], VGG [16], and142

GoogLeNet [17] with ReLUs [18] can be made input-convex with Proposition 1. In the experiment143

that follow, we will explore ICNNs with both fully connected and convolutional layers.144

3.2 Partially input-convex architectures145

The FICNN provides joint convexity over the entire input space, which indeed may be a restriction146

on the allowable class of models; indeed, neural networks derive much of their power from the fact147

that they are general function approximators. Furthermore, this full joint convexity is unnecessary148

in settings like structured prediction where the neural network is used to build a joint model over an149

input and output example space and only convexity over the outputs is necessary.150

In this section we propose an extension to the pure FICNN, the partially input-convex neural net-151

work (PICNN), that is convex only over some inputs to the network. As we will show, these networks152

generalize both traditional feedforward networks and FICNNs, and thus provide substantial repre-153

sentational benefits. In the following, keeping with the context of structured prediction, we will154

2Some passthrough layers have been recently explored in the deep residual networks [14], though these
differ from those of an ICNN as they only pass through hidden layers deeper in the network, whereas to
maintain convexity our passthrough layers can only apply to the input directly.

4

Features

Class Prediction 𝑓(𝑥, 𝑦; 𝜃)

Results: multi-label classification
Task: Predict tags for bibtex entries from bag of words features

Used in Belanger and McCallum, 2016: Structured Prediction Energy Networks

ICNNs almost recover the same performance as SPENs despite the convexity
restrictions

17

Method Test Macro-F1
NN (Baseline) 0.396
SPEN 0.422
ICNN 0.415

ICML 2017 ICNNs: Amos, Xu, and Kolter

$𝑦(𝑥) = argmin! 𝑓(𝑥, 𝑦; 𝜃)

z1
W (x)

0 z2 zk
W (z)

1

W (x)
1

. . .

W (x)
k−1

z3
W (z)

2

W (x)
2

x

x u1

y z1

u2

z2 . . .

. . . uk−1

zk−1 zk

Figure 1: Left: A fully input-convex neural network (FICNN). Right: A partially input-convex
neural network (PICNN).

3.1 Fully input-convex neural networks120

To begin, we consider a fully convex, k-layer, fully connected ICNN, shown in Figure 1. This model121

defines a neural network over the input x using the architecture122

zi+1 = gi
⇣
W (z)

i zi +W (x)
i x+ bi

⌘
, i = 0, . . . , k � 1

f(x; ✓) = zk
(7)

where zi denote the layer activations (with z0,W
(z)
0 ⌘ 0), ✓ = {W (x)

0:k�1,W
(z)
1:k�1, b0:k�1} are the123

parameters, and gi are non-linear activation functions. The central result on convexity of the network124

is the following:125

Proposition 1. The function f is convex in x provided that all W (z)
1:k�1 are non-negative, and all126

functions gi are convex and non- decreasing.127

The proof is simple and follows from the fact that non-negative sums of convex functions are also128

convex and that the composition of a convex and convex non-decreasing function is also convex129

(see e.g. Boyd and Vandenberghe [12, 3.2.4]). The constraint that the gi be convex non-decreasing130

is not particularly restrictive, as current non-linear activation units like the rectified linear unit or131

max-pooling unit already satisfy this constraint. The constraint that the W (z) terms be non-negative132

are somewhat restrictive, but because the bias terms and W (x) terms can be negative, the network133

still has substantial representation power, as we will shortly demonstrate empirically.134

One notable addition in the ICNN are the “passthrough” layers that directly connect the input x135

to hidden units in deeper layers. Such layers are unnecessary in traditional feedforward networks136

because previous hidden units can always be mapped to subsequent hidden units with the identity137

mapping; however, for ICNNs, the non-negativity constraint subsequent W (z) weights restricts the138

allowable use of hidden units that mirror the identity mapping, and so we explicitly include this139

additional passthrough.2140

Other linear operators like convolutions can be included in ICNNs without changing the convex-141

ity properties. Indeed, modern feedforward architectures such as AlexNet [15], VGG [16], and142

GoogLeNet [17] with ReLUs [18] can be made input-convex with Proposition 1. In the experiment143

that follow, we will explore ICNNs with both fully connected and convolutional layers.144

3.2 Partially input-convex architectures145

The FICNN provides joint convexity over the entire input space, which indeed may be a restriction146

on the allowable class of models; indeed, neural networks derive much of their power from the fact147

that they are general function approximators. Furthermore, this full joint convexity is unnecessary148

in settings like structured prediction where the neural network is used to build a joint model over an149

input and output example space and only convexity over the outputs is necessary.150

In this section we propose an extension to the pure FICNN, the partially input-convex neural net-151

work (PICNN), that is convex only over some inputs to the network. As we will show, these networks152

generalize both traditional feedforward networks and FICNNs, and thus provide substantial repre-153

sentational benefits. In the following, keeping with the context of structured prediction, we will154

2Some passthrough layers have been recently explored in the deep residual networks [14], though these
differ from those of an ICNN as they only pass through hidden layers deeper in the network, whereas to
maintain convexity our passthrough layers can only apply to the input directly.

4

Features

Class
Prediction

𝑓(𝑥, 𝑦; 𝜃)

Results: image completion
Task: Predict the left side of the image given the right side. Used in Poon
and Domingos 2011; Sum-Product Networks

ICNN: DQN-like network over both input and output

18

Method MSE
SPN 942
ICNN: Bundle Entropy 833.0
ICNN: Gradient Descent 872.0
ICNN: Non-convex (GD) 850.9

ICML 2017 ICNNs: Amos, Xu, and Kolter

$𝑦(𝑥) = argmin! 𝑓(𝑥, 𝑦; 𝜃)

z1
W (x)

0 z2 zk
W (z)

1

W (x)
1

. . .

W (x)
k−1

z3
W (z)

2

W (x)
2

x

x u1

y z1

u2

z2 . . .

. . . uk−1

zk−1 zk

Figure 1: Left: A fully input-convex neural network (FICNN). Right: A partially input-convex
neural network (PICNN).

3.1 Fully input-convex neural networks120

To begin, we consider a fully convex, k-layer, fully connected ICNN, shown in Figure 1. This model121

defines a neural network over the input x using the architecture122

zi+1 = gi
⇣
W (z)

i zi +W (x)
i x+ bi

⌘
, i = 0, . . . , k � 1

f(x; ✓) = zk
(7)

where zi denote the layer activations (with z0,W
(z)
0 ⌘ 0), ✓ = {W (x)

0:k�1,W
(z)
1:k�1, b0:k�1} are the123

parameters, and gi are non-linear activation functions. The central result on convexity of the network124

is the following:125

Proposition 1. The function f is convex in x provided that all W (z)
1:k�1 are non-negative, and all126

functions gi are convex and non- decreasing.127

The proof is simple and follows from the fact that non-negative sums of convex functions are also128

convex and that the composition of a convex and convex non-decreasing function is also convex129

(see e.g. Boyd and Vandenberghe [12, 3.2.4]). The constraint that the gi be convex non-decreasing130

is not particularly restrictive, as current non-linear activation units like the rectified linear unit or131

max-pooling unit already satisfy this constraint. The constraint that the W (z) terms be non-negative132

are somewhat restrictive, but because the bias terms and W (x) terms can be negative, the network133

still has substantial representation power, as we will shortly demonstrate empirically.134

One notable addition in the ICNN are the “passthrough” layers that directly connect the input x135

to hidden units in deeper layers. Such layers are unnecessary in traditional feedforward networks136

because previous hidden units can always be mapped to subsequent hidden units with the identity137

mapping; however, for ICNNs, the non-negativity constraint subsequent W (z) weights restricts the138

allowable use of hidden units that mirror the identity mapping, and so we explicitly include this139

additional passthrough.2140

Other linear operators like convolutions can be included in ICNNs without changing the convex-141

ity properties. Indeed, modern feedforward architectures such as AlexNet [15], VGG [16], and142

GoogLeNet [17] with ReLUs [18] can be made input-convex with Proposition 1. In the experiment143

that follow, we will explore ICNNs with both fully connected and convolutional layers.144

3.2 Partially input-convex architectures145

The FICNN provides joint convexity over the entire input space, which indeed may be a restriction146

on the allowable class of models; indeed, neural networks derive much of their power from the fact147

that they are general function approximators. Furthermore, this full joint convexity is unnecessary148

in settings like structured prediction where the neural network is used to build a joint model over an149

input and output example space and only convexity over the outputs is necessary.150

In this section we propose an extension to the pure FICNN, the partially input-convex neural net-151

work (PICNN), that is convex only over some inputs to the network. As we will show, these networks152

generalize both traditional feedforward networks and FICNNs, and thus provide substantial repre-153

sentational benefits. In the following, keeping with the context of structured prediction, we will154

2Some passthrough layers have been recently explored in the deep residual networks [14], though these
differ from those of an ICNN as they only pass through hidden layers deeper in the network, whereas to
maintain convexity our passthrough layers can only apply to the input directly.

4

(Given) Right
Face Half

(Predicted) Left
Face Half

𝑓(𝑥, 𝑦; 𝜃)

ICNN Test Set Completions

Results: continuous-action RL
Using Q-learning with entropy-regularized ICNN to represent Q function.

Comparing to DDPG [Lillicrap et al., 2016], and NAF [Gu et al., 2016]

NAF is particularly similar: also uses a value function that is convex in the
input, but uses a quadratic representation to guarantee this convexity

19

Table: Max (rolling) test reward obtained on
Gym continuous control tasks

ICML 2017 ICNNs: Amos, Xu, and Kolter

Select actions with:
𝑎⋆ 𝑠 = argmin" − 𝑄(𝑠, 𝑎; 𝜃)

State

Action

−𝑄(𝑠, 𝑎; 𝜃)

Input Convex Neural Networks
Brandon Amos Lei Xu J. Zico Kolter

Carnegie Mellon University
School of Computer Science

The full TensorFlow source code to reproduce all of our experiments is
available online at https://github.com/locuslab/icnn

1. Our Contribution: Input Convex Neural Networks

2. Challenges: Inference and Learning

3. Experiments
1. Synthetic
2. Multi-label Classification
3. Image Completion
4. Continuous–Action Q-Learning

https://github.com/locuslab/icnn

