Input Convex Neural Networks

Brandon Amos Lei Xu* J. Zico Kolter
Carnegie Mellon University
School of Computer Science
*Tsinghua University, work done while at CMU

ICML 2017

Big picture

What are the “atomic operations” or building blocks of modern Al systems”?

The current situation: Matrix-vector products (dense or sparse/structured),
(sub)differentiable non-linear functions, random sampling

This talk: We should consider (convex) optimization as another potential
atomic operation, to be composed with others

Note: we already use optimization in the learning procedures, but we should
also consider it as an operation for inference and control

This is not a new idea: some of the original work in neural networks
considered them composition with more complex, optimization-based
prediction (c.f. structured prediction)

ICML 2017 ICNNs: Amos, Xu, and Kolter 2

Applications of Optimization for Inference

Structured prediction: define a network over X XY and predict via
$(x) = argminy, f(x,y; 6)

Data imputation: build a network over only over Y, given y; populate the
remaining entries via

y7 = argminy,. f(y7,y7; 6)

Continuous action reinforcement learning: Represent Q function as
Q*(s,a) = —f(s,a; 0), policy becomes
n*(s) = argming,f (s, a; 0)

ICML 2017 ICNNs: Amos, Xu, and Kolter

Talk Overview

> 1. Our Contribution: Input Convex Neural Networks
2. Challenges: Inference and Learning

3. Experiments
1. Synthetic
2. Multi-label Classification
3. Image Completion
4. Continuous—Action Q-Learning

ICML 2017 ICNNs: Amos, Xu, and Kolter

Input Convex Neural Networks (ICNNS)

Scalar-valued network f(x,y; 8) such that f is convex in y for all values of
x (note that these networks are still not convex in 8 = {W;, b;})

ICNNs can efficiently optimize over some inputs to the network given
other inputs

Efficiently captures dependencies in the output space for prediction

It turns out, we don’t need very many restrictions on the network to
achieve this property

ICML 2017 ICNNs: Amos, Xu, and Kolter 5

Applications of Optimization for Inference

With ICNNs: All of these problems are
convex, “easy” to solve globally

Structured prediction: define a network over X xY and predict via
y(x) = argmin,, f(x,y;0)

Data imputation: build a network over only over Y, given y; populate the
remaining entries via

y7 = argminy,. f(y7,y7; 6)

Continuous action reinforcement learning: Represent Q function using
ICNN Q*(s,a) = —f(s,a;0), policy becomes
n*(s) = argming,f (s, a; 0)

ICML 2017 ICNNs: Amos, Xu, and Kolter

Example Networks

ICNN for structured prediction:
9(x) = argmin,, f(x,y; 6)

Features | * [“ [2 [~ "
Class y > 2 29 b .. — 21— 2z
Prediction
) A A

uit1 = §i(Wiu; + b;)
Zit1 = g; (Wi(UZ) (Uz o Zi) + Wi(U)ui + Wi(Z)Zi + Wi(y)yi + b2>

ICML 2017

ICNN for Q learning:
n*(s) = argmin, — Q(s,a; 0)

State| s 2| W > Y2 > -0 > Uk-1
e N \—W(s,a;0)
Action| a > 21 » 20 > oo =zl 2
A T X

Ui+l = §i(Wiui + Bi)
Zi+1 = Gi (Wi(z) (Zi o [Wi(zu)ui T b£2)]+)+
Wz‘(a) (a 5 (Wi(au)ui + bga))) i Wi(u)ui B bi)

=Q(s8,a;0) = f(8,8;0) = 25, ug =8, zp =a

ICNNs: Amos, Xu, and Kolter 7

How to achieve input convexity?

Most networks can be “trivially” modified to guarantee input convexity

Consider simple feedforward RelLU network:
Ziy1= maX{O, WiZi + bi}, [= 1, vy k
f;0) =211, 1=y

f is convex in y provided that the W;are non-negative fori > 1

More generally, any activation function that is convex and non-decreasing
also has this property.

ICML 2017 ICNNs: Amos, Xu, and Kolter

Is convexity restrictive?

Yes (by definition, the functions are restricted to be convex), but not that
bad in practice

E.g., we can trivially capture any feedforward network f (x) with the

5 2
network f(x,y) = (y — f(x))

More complex convex portion adds additional structure over y, which can
still be “easily” optimized over

We'll see more evidence for this later

ICML 2017 ICNNs: Amos, Xu, and Kolter 9

Talk Overview

1. Our Contribution: Input Convex Neural Networks

> 2. Challenges: Inference and Learning

3. Experiments
1. Synthetic
2. Multi-label Classification
3. Image Completion
4. Continuous—Action Q-Learning

ICML 2017 ICNNs: Amos, Xu, and Kolter

10

Challenges for ICNNs

Inference: how do we efficiently perform the optimization?
y*(x; 8) = argmin,, f(x,y;0)

Learning: How do we train the network (find 8) such that it gives good
predictions?

n
minimizeg Z (i, y* (x5 0))
i=1

ICML 2017 ICNNs: Amos, Xu, and Kolter

11

Inference in ICNNs

In theory, inference in ICNNSs is just a linear program
min,, f(y;0) = miny, z Zy+1
St Ziy1 = WiZi + bi
z; =0 fori > 1
z1 =)y

This program has as many variables as hidden units in the network, exact
solution methods require that we invert the W;' W; matrices

Instead, exploit the fact that we can easily compute the gradient of
f(x,y; 8) with respect to y (this is just backprop), optimize using
gradient-based methods.

We found that the bundle method performs better than gradient descent
iNn some cases.

ICML 2017 ICNNs: Amos, Xu, and Kolter 12

Inference with the Bundle Method

Repeatedly minimize a lower bound on the function

Using convexity property to minimize more quickly than gradient descent

Boundary constraints are difficult, so we actually use an entropy penalty
fCx,y;0) +ylogy + (1 —y)log(l—y)

ICML 2017 ICNNs: Amos, Xu, and Kolter 13

ICNN Learning

Two possibilities for training networks

1. Max-margin structured prediction: enforce constraint that
f(x;,yi;0) < argminy, (f (x5, y;6) + A(y, v;))
Common structured prediction approach
Margin-scaling term A(y, y;) can be finicky

2. Direct argmin differentiation, directly compute
Vot (v, y* (x5 6))
Can be approximated by unrolling an optimization procedure
Plays nicely with bundle method and approximate optimization
May require some differential calculus (nothing too nasty)

ICML 2017 ICNNs: Amos, Xu, and Kolter 14

Talk Overview

1. Our Contribution: Input Convex Neural Networks

2. Challenges: Inference and Learning

> 3. Experiments

1. Synthetic

2. Multi-label Classification

3. Image Completion

4. Continuous—Action Q-Learning

ICML 2017 ICNNs: Amos, Xu, and Kolter

15

Results: toy example

Partially input convex neural network trained to classify points in 2D space

Features

Class Prediction

y(x) = argmin,, f(x,y;0)

X

Uy

U2

Y A(/’ Y
V/V
e

21

R e o

Uk—1

N\

AN

oo —

Y

f(x,y;0)

Only point to remember from this: convex energy function does not imply a
convex decision boundary; argmin operator is a powerful one

ICML 2017

ICNNs: Amos, Xu, and Kolter

16

Results: multi-label classification

Task: Predict tags for bibtex entries from bag of words features
Used in Belanger and McCallum, 2016: Structured Prediction Energy Networks

ICNNs almost recover the same performance as SPENs despite the convexity
restrictions

y(x) = argmin,, f(x,y;0)

Method | Test Macro-F1

centures | = 1ol o ol w s Sl NN (Baseline) 0.396
NN N S yi0) gpen 0.422
ass > 2 > 29 > ... — 2 1} Zk

Prediction | © | ICNN 0.415

A

ICML 2017 ICNNs: Amos, Xu, and Kolter 17

Results: image completion

Task: Predict the left side of the image given the right side. Used in Poon
and Domingos 2011; Sum-Product Networks

ICNN: DQN-like network over both input and output

y(x) = argmin,, f(x,y;0)
(Given) Right -~

Face Half

ICNN Test Set Completions
- . ’

X

Ui Uz U1

v &
1
e
A
v

21 29 k-1

(Predicted) Left [0 | y
Face Half
A A A

SPN 942

ICNN: Bundle Entropy 833.0
ICNN: Gradient Descent 872.0
ICNN: Non-convex (GD) 850.9

ICML 2017 ICNNs: Amos, Xu, and Kolter 18

Results: continuous-action RL

Using Q-learning with entropy-regularized ICNN to represent Q function.
Comparing to DDPG [Lillicrap et al., 2016], and NAF [Gu et al., 2016]

NAF is particularly similar: also uses a value function that is convex in the
input, but uses a quadratic representation to guarantee this convexity

Table: Max (rolling) test reward obtained on
_ _ Gym continuous control tasks
Select actions with:

N . _ Task DDPG NAF ICNN
a*(s) = argming — Q(s, a;6) Ant 1000.00 999.03 1056.29
HalfCheetah 2909.77 2575.16 3822.99

State| s 2| w > w2 > - Uk Hopper 1501.33 1100.43 831.00

A N 96 @ 8) Humanoid 524.09 5000.68 433.38

Action | Ll Lsl 2 Ls. 2o —sheal 5 & HumanoidStandup 134265.96 116399.05 141217.38

InvDoubPend 0358.81 9359.50 9359.41
a) t InvPend 1000.00 1000.00 1000.00

Reacher -6.10 -6.31 -5.08

Swimmer 49.79 69.71 64.89

Walker2d 1604.18 1007.25 208.21

ICML 2017 ICNNs: Amos, Xu, and Kolter 19

Input Convex Neural Networks

Brandon Amos Lei Xu J. Zico Kolter
Carnegie Mellon University
School of Computer Science

1. Our Contribution: Input Convex Neural Networks
2. Challenges: Inference and Learning

3. Experiments
1. Synthetic
2. Multi-label Classification
3. Image Completion
4. Continuous—Action Q-Learning

The full TensorFlow source code to reproduce all of our experiments is
available online at https://github.com/locuslab/icnn

https://github.com/locuslab/icnn

