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Normalizing flows are powerful models

Open problem: How to best-model f?
 Model a differentiable, invertible flow f, such that
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0x

Py(Jo(x)) = px(x)

Convex Potential Maps
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How to best-model the flow?

» The Jacobian determinant | df(x)/0x| needs to be invertible
 Leads to specialized architectures (RealNVFE, NICE, Glow, MAF, |IAF)
e Challenge: Ensuring the flow is universal

 Does the model have the capacity to model any distribution?



Motivation: Surfaces and Riemannian Manifolds

 Many physical phenomena live in non-Euclidean geometries
 Riemannian manifolds are locally-Euclidean surfaces

e | et's model and learn distributions on them!

ShapeNet

i

‘‘‘‘‘‘‘
N

“JAA'E BrircOmgima
Y TEEEE.EREBEE T REE B
ARRVYELR®S A1 A

» » - - - - - - -~ -~ - - - -~ - - - -~ - ~ e

o~ - - - - - ~ - - - - - - - - - - Aad

555555555555555

\\\\\\\\\\\\\

W W AN AW N M N

o M N X o

I B¢ M




This talk: Convex optimization and flows

 Convex Potential Flows with Input-Convex Neural Networks

 Riemannian Optimal Transportation

 Riemannian Convex Potential Maps



https://arxiv.org/abs/2012.05942
https://arxiv.org/abs/1609.07152
https://www.springer.com/gp/book/9783540710493
https://arxiv.org/abs/2106.10272

CONVEX POTENTIAL FLOWS:
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ABSTRACT

Flow-based models are powerful tools for designing probabilistic models with
tractable density. This paper introduces Convex Potential Flows (CP-Flow), a
natural and efficient parameterization of invertible models inspired by the opti-
mal transport (OT) theory. CP-Flows are the gradient map of a strongly convex
neural potential function. The convexity implies invertibility and allows us to re-
sort to convex optimization to solve the convex conjugate for efficient inversion.
To enable maximum likelihood training, we derive a new gradient estimator of the
log-determinant of the Jacobian, which involves solving an inverse-Hessian vector
product using the conjugate gradient method. The gradient estimator has constant-
memory cost, and can be made effectively unbiased by reducing the error tolerance
level of the convex optimization routine. Theoretically, we prove that CP-Flows
are universal density approximators and are optimal 1in the OT sense. Our empiri-
cal results show that CP-Flow performs competitively on standard benchmarks of
density estimation and variational inference.




Background: Optimal Transport

e Optimal transport seeks to find an optimal
coupling 7 between measures o and [/

* Monge's formulation: Represent the coupling as
a map & and find the minimum cost one:

min E, [c(a, Jt(a))]
71'371'(05)““]?5 (Source: Computational Optimal Transport)




Brenier's heorem

Theorem 1 (Brenier’s Theorem, Theorem 1.22 of Santambrogio (2015)). Let u, v be probability
measures with a finite second moment, and assume [ has a Lebesgue density px. Then there exists

a convex potential G such that the gradient map g := VG (defined up to a null set) uniquely solves
the Monge problem in eq. (2) with the quadratic cost function c(x,y) = ||x — yl|*.

o Celebrated result in optimal transport £+
» Monge problems can be solved using gradients of a convex function
¢ lLe., n(x) = VG(x)

* ldea: Construct a flow using convex functions
Model with input-convex neural networks



Input-Convex Neural Networks

 Fact: RelLU neural nets represent non-convex piecewise linear function
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* |dea: Constrain them to (universally) represent convex functions
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How to achieve input convexity?

 Most networks can be "trivially" modified to guarantee input-convexity
» Consider a simple feedforward k-layer ReLU network:

Zi1 = max {0,Wz; + b, | f;0) =z, + 1 7] =X

« Theorem. f is convex in y provided that the W, are non-negative fori > 1

 Any convex and non-decreasing activation function has this property



Convex Potential Flows
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Figure 1: Illustration of Convex Potential Flow. (a) Data « drawn from a mixture of Gaussians. (b) Learned
convex potential F'. (c¢) Mesh grid distorted by the gradient map of the convex potential f = V F'. (d) Encoding
of the data via the gradient map z = f(z). Notably, the encoding is the value of the gradient of the convex
potential. When the curvature of the potential function is locally flat, gradient values are small and this results
in a contraction towards the origin.



Convex Potential Flows are Universal

1. ICNNs model the gradient of any convex function

2. Apply Brenier's theorem (any flow is the gradient of a convex function)



Related work on Euclidean convex potential flows

1. Korotin et al. "Wasserstein-2 Generative Networks." 2019.

2. Taghvael & Jalali. "2-wasserstein approximation via restricted convex
potentials with application to improved training for gans.” 2019.

3. Makkuva et al. "Optimal transport mapping via input convex neural
networks." 2019.

4. Finlay et al. "Learning normalizing flows from Entropy-Kantorovich
potentials.” 2020.
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Riemannian Optimal Transport

» (Given source y and target v measures on manifolds find an (OT) map
pushing source to target.

argminj clx, t(x)]du
M
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c-convexity

 Standard convexity is just for Euclidean spaces

e c-convexity is an extension that can be applied to Riemannian manifolds
e Thecostc: X' X Y — (—o0, + 0]
» Definitions. Let i be a function and 2, % be sets.

. Y is c-convex if it can be written as y(x) = sup,, (C (y) — c(x, y)) for all x

o The c-transform of yis y“(y) = Int, (l//()C) + c(x, y))



Connecting c-convexity and Euclidean convexity

. Captures Euclidean convexity with c(x,y) = — x 'y

. The c-transform becomes the Legendre transform y“(y) = inf (l//(X) — xTy)

o c-convexity definition: ys is c-convex if it can be represented as the convex
conjugate of another function ¢



McCann's Extension to Brenier's Theorem

* Brenier's theorem was originally for
Euclidean spaces with quadratic costs

* Monge transport map can be
represented as #(x) = V @ with ¢ convex

 McCann's result extends it to Riemannian
spaces using c-convexity

e 1(x) = exp( V@) with ¢ c-convex

POLAR FACTORIZATION OF MAPS ON
RIEMANNIAN MANIFOLDS

Robert J. McCann”

Department of Mathematics
University of Toronto, Toronto Ontario Canada M5S 3G3

mccann@mat h.toronto.edu

May 27, 1999

Abstract

Let (M,g) be a connected compact manifold, C*® smooth and without
boundary, equipped with a Riemannian distance d(z,y). If s : M — M is
merely Borel and never maps positive volume into zero volume, we show s = tou
factors uniquely a.e. into the composition of a map t(z) = exp,[— Vi)(z)| and
a volume-preserving map v : M — M, where ¢» : M — R is an infimal
convolution with ¢(z,y) = d*(z,y)/2. Like the factorization it generalizes from
Euclidean space, this non-linear decomposition can be linearized around the
identity to yield the Hodge decomposition of vector fields.

The results are obtained by solving a Riemannian version of the Monge-
Kantorovich problem, which means minimizing the expected value of the cost
c¢(x,y) for transporting one distribution f > 0 of mass in L' (M) onto another.
A companion article extends this solution to strictly convex or concave cost
functions ¢(x,y) > 0 of the Riemannian distance on non-compact manifolds.
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Extension of Convex Potential Flows
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Our c-convex potential: Semidiscrete OT

e Our semidiscrete OT on manifolds

Use discrete c-concave potentials of the form ¢(x) = min c(x, yl) + a;

Learnable parameters




Theory: Universality

Theorem 1: For compact, boundaryless, smooth manifolds,
{f | f(x) = minc(x, y;) + al-} is dense in {f|f is c-concave}.

1€|n]

Theorem 2: If i, v are regular, there exists a sequence of
discrete c-concave potentials ¢ such that exp| — V¢ ] 5t

where t is the OT map.




Implementation Detalls

 Map architecture: stack of multiple blocks of the form
S](y]) — eXp[ T Vy]¢](y])]9 .] — 13“-9 T

 Smoothing: applied to discrete c-concave layers

n
(-
min(a, ...,a,) = — ylogz exp — —
Y 1 /

* Loss: standard density estimation losses (NLL, KL)



Results

Density Estimation
Geodesics Estimation



Related work on exponential map flows

A Jacobian inequality for gradient maps on the

sphere and its application to directional statistics o .
Normalizing Flows on Tori and Spheres

Tomonari SEI L . , . .
Danilo Jimenez Rezende, George Papamakarios, Sebastien Racaniere,

September 16, 2018 Michael S. Albergo, Gurtej Kanwar, Phiala E. Shanahan, Kyle Cranmer

Normalizing flows are a powerful tool for building expressive distributions in

Abstract high dimensions. So far, most of the literature has concentrated on learning

In the field of optimal transport theory, an optimal map is known to be a flows on Euclidean spaces. Some problems however, such as those involving
gradient map of a potential function satisfying cost-convexity. In this paper, angles, are defined on spaces with more complex geometries, such as tori or

the Jacobian determinant of a gradient map is shown to be log-concave with : : :
. , , , spheres. In this paper, we propose and compare expressive and numerically
respect to a convex combination of the potential functions when the underlying

manifold is the sphere and the cost function is the distance squared. The stable flows on such spaces. Our flows are built recursively on the dimension

proof uses the non-negative cross-curvature property of the sphere recently of the space, starting from flows on circles, closed intervals or spheres.
established by Kim and McCann, and Figalli and Rifford. As an application

to statistics, a new family of probability densities on the sphere is defined in

terms of cost-convex functions. The log-concave property of the likelihood

function follows from the inequality.
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