
Downstream Evaluation on Diffusion Metrics for Susceptibility Artifact
Correction via Complex Forward-Distortion Network

Abdallah Zaid Alkilani1,2, Atakan Topcu1,2, Tolga Çukur1,2,3, and Emine Ulku Saritas1,2

1Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey,
2National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey,
3Neuroscience Graduate Program, Bilkent University, Ankara, Turkey

0. Summary
This study examines a deep learning method for EPI susceptibility correction that merges
physics-constrained learning with phase-injected formulation and two-step training, and
assesses its impact on diffusion metrics. It offers quick and effective correction, suitable for
clinical and research use.

1. Introduction
Diffusion MRI (dMRI) enhances our understanding of the brain's fiber structure and
connectome, with its efficacy hinging on data-intensive multi-shell sampling [1-5]. Derived
metrics from dMRI enable visualization and assessment of the integrity of white matter
pathways [6,7].

Echo planar imaging (EPI) is a rapid imaging sequence that is preferred for dMRI due to its
motion robustness; yet, EPI suffers from susceptibility artifacts that compromise resultant
diffusion-weighted image (DWI) quality [8,9], obligating correction for accurate quantitative
analysis [10]. Typically, reversed-phase-encode (reversed-PE) methods are used to correct for
these artifacts in EPI images [11]. However, traditional correction methods are computationally
demanding, limiting practicality in clinical settings.

We recently introduced complex Forward-Distortion Network (compFD-Net) for unsupervised
susceptibility artifact correction in EPI images via a phase-injection formulation [12,13].
comFD-Net’s performance was proven effective for high SNR b0 images. However, when the
compFD-Net model trained on b0 images was zero-shot transferred to process low-SNR b>0
images, it performs suboptimally. In this work, we propose an extended method compFD-Net+
that improves correction performance on multi-shell dMRI data via a two-step training approach.
In particular, we propose to pre-train compFD-Net+ on relatively high-SNR b0 images to boost
initial learning, and then to fine-tune it on b>0 images to increase specialization to image
features at higher b-values. Downstream evaluations on dMRI metrics demonstrate the
efficiency of this approach, as well as its computational advantage with respect to classical
correction techniques such as TOPUP.



2. Methods

Classical Correction Approach
Field-map based correction techniques for susceptibility artifacts use reversed-PE images,
assuming opposite distortions along the PE direction and directly correcting the images using an
estimated field [14]. In this study, we employ FSL’s TOPUP as our reference method, regarded
as a gold-standard for EPI distortion correction based on field estimates derived from
reversed-PE images [11,15].

Dataset & Learning Procedures
We used randomly selected, unprocessed dMRI data from the Human Connectome Project's
1200 Subjects Data Release [16]. The gradient tables included 89 diffusion-weighting directions
with 6 interspersed b0 acquisitions. The diffusion-weighting directions were uniformly distributed
over three q-space shells with b=(1000, 2000, 3000) s mm-2.
A (42, 4, 8)-subject split was used for training, validation, and testing. The proposed
compFD-Net+ was pre-trained on b0 images from 42 training subjects, and then fine-tuned on
b>0 images from a subset of 12 training subjects. This two-step training is driven by the notably
higher SNR of b0 images compared to b>0 images. Meanwhile, compFD-Net was exclusively
trained on b0 images from 42 training subjects.

Evaluation on Diffusion Metrics
The downstream effects of susceptibility artifact correction with the proposed technique are
evaluated for the following diffusion metrics: Fractional anisotropy (FA) and mean diffusivity
(MD) metrics from diffusion tensor imaging (DTI) [1,17]; Orientation dispersion index (ODI) and
intracellular volume fraction (ICVF) metrics from NODDI [18]; Apparent fiber density (AFD) and
number of fiber orientations (nuFO) metrics from MT-CSD [6,19]. FA and MD were derived using
DIPY [20], ODI and ICVF using AMICO [21], and AFD and nuFO using MRTrix3 [22]. TOPUP
correction was applied for reference, and brain masks were derived from TOPUP's b0 images
with FSL’s brain extraction tool [23].

3. Results
The diffusion metrics for compFD-Net, the proposed compFD-Net+, and TOPUP were
calculated from their respective DWIs after susceptibility correction. On average, TOPUP
required ~51 minutes to compute the displacement field and ~6 seconds for correcting each
volume afterwards, with a total correction time of ~60 minutes per subject. In contrast, correcting
a single volume using compFD-Net or compFD-Net+ took ~8 seconds, reducing the total
correction time to ~13 minutes per subject.



The dMRI metrics for a representative slice are shown in Figure 2. Visually, compFD-Net+
demonstrates higher consistency to TOPUP results than compFD-Net. The image quality
assessments in Table 1 and 2 demonstrate the superiority of compFD-Net+ over compFD-Net
across DWIs from different b-values and diffusion metrics, respectively. Improvements for
compFD-Net+ are consistently observed across all evaluations.

4. Discussion and Conclusion
The results show that compFD-Net+ delivers high-grade correction of multi-shell dMRI data
across b-values and yields accurate dMRI metrics. The two-step training approach extends the
physics-constrained phase-injected complex formulation to boost susceptibility correction quality
and enhance model generalizability.compFD-Net+ maintains fidelity while rapidly performing
correction, demonstrating potential in clinical and research settings.
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Figures

Figure 1. Overview of the compFD-Net+ architecture. The input EPI blip-up and blip-down (i.e.,
reversed-PE) images are used to predict the susceptibility-induced displacement field and the
underlying anatomically correct image as a complex-valued image (represented as magnitude
and phase images). The corrected complex-valued image is forward distorted with the
displacement field via the complex K-Unit, and the forward-distorted images are used to enforce
fidelity to the input EPI blip-up and blip-down images.

Figure 2. Diffusion metrics from a representative slice. Both the proposed compFD-Net+ and
compFD-Net are compared to TOPUP via absolute error maps. MD is measured in units of 10-3

mm2 s-1. Note that nuFO is a discrete map.



Table 1. Image quality assessment comparison across DWIs with different b-values for the
proposed compFD-Net+ and compFD-Net. TOPUP results are taken as reference. PSNR (units:
dB) and SSIM (percentage) are provided as mean and standard deviation (in parentheses)
across all slices from the test subjects.

Table 2. Image quality assessment comparison across diffusion metrics for the proposed
compFD-Net+ and compFD-Net. TOPUP results are taken as reference. PSNR (units: dB) and
SSIM (percentage) are provided as mean and standard deviation (in parentheses) across all
slices from the test subjects.


