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Synopsis

Motivation: Most di�usion MRI techniques require extensive sampling of q-space to e�ectively resolve �ber structures at a �ne detail. The scan

times become impractically long, especially for clinical settings.

Goal(s): Our goal is to arbitrarily interpolate the q-space data to enable downsampling of q-space, while maintaining high �delity di�usion metrics.

Approach: We propose QUCCI, a subject-speci�c unsupervised implicit network model that utilizes both implicit and physics-driven explicit

regularization to encode di�usion MRI signals with angular continuity.

Results: QUCCI achieves superior q-space interpolation, outperforming traditional and deep learning methods.

Impact: QUCCI provides high-�delity di�usion MRI metrics via improving the angular interpolation of di�usion MRI signals under highly

undersampled q-space cases, which may especially be bene�cial in the clinical settings where excessively long scan times are impractical.

Introduction
Di�usion MRI (dMRI) has enabled the study of the brain's complex architecture in vivo. However, resolving �ber structures at a �ner detail

necessitates denser q-space sampling, which can be impractical due to excessively long scan times . Deep learning methods for angular q-space

interpolation show potential for reduced scan time by enabling q-space downsampling. However, these methods often demand large training data

and pose challenges when dealing with non-conforming data, such as in pathological cases .

We propose a subject-speci�c, unsupervised Q-space Upsampling via physics-Constrained Coordinate-based Implicit network (QUCCI) that angularly

interpolates q-space data. QUCCI combines implicit multilayer perceptron regularization with physics-driven spherical harmonic (SH) regularization

and image regularization in the context of dMRI. In comparison to traditional and other deep learning methods, QUCCI demonstrates superior

angular interpolation for highly undersampled q-space acquisitions.

Methods
Classical Spherical Harmonics Interpolation:

For each voxel, dMRI signal in q-space can be decomposed using SH basis functions via a least-squares �tting to the acquired q-space data . For

spherical harmonics interpolation (SHI), dMRI images at an unacquired q-space direction can be estimated via a linear combination of SHs with their

corresponding SH basis functions.

Learning-based Approach:

A previous learning-based approach, NeSH, takes voxel-space coordinates as input, and utilizes coordinate-based networks to predict SH

coe�cients for each voxel . For training, predicted SH coe�cients are converted to estimated dMRI images, and estimated and acquired dMRI

images are compared at sampled q-space directions. NeSH bene�ts from implicit regularization of coordinate-based networks to represent q-space

in angular continuity, and utilizes l1-norm regularization on SH coe�cients. While NeSH was shown to provide a coherent q-space representation

across a range of undersampling rates, it performs suboptimally towards high undersampling rates.

Proposed Method:

We propose a subject-speci�c, unsupervised coordinate-based model that utilizes implicit and physics-driven regularization in voxel-space and q-

space domains. QUCCI, outlined in Fig. 1, takes voxel-space coordinates as input, and sets them as centers of isotropic Gaussian distributions. Then,

voxel coordinates sampled from these distributions are mapped to positional encodings . This sampling scheme enables implicit voxel-space

regularization by enforcing adjacent coordinates to have similar image intensities. To enforce data consistency, we adopt a scheduling system that

sets the standard deviation of Gaussian distributions to zero near the end of training.

QUCCI predicts SH coe�cients for each voxel. During training, the network minimizes mean-square-error (MSE) between the dMRI images

estimated via SH coe�cients and the acquired dMRI images at sampled q-space directions. This procedure enforces implicit q-space regularization,

as the model learns to estimate SH coe�cients with no explicit supervision. For explicit q-space regularization, Laplace-Beltrami (LB) regularization

is applied on SH coe�cients, as it was shown to be well-suited for single-shell q-space measurements distributed on a sphere . A pre-trained plug-

and-play denoiser is incorporated for explicit voxel-space regularization of the estimated dMRI images . The overall loss is:

where  denotes SH coe�cients,  denotes the acquired dMRI images, , is the physical model that estimates dMRI images from SH coe�cients,

 is MSE between the estimated and acquired dMRI images,  is the LB regularizer over SH coe�cients, and  is the plug-and-play

denoiser in voxel-space.

Implementation Details:

Single-shell dMRI data for �ve randomly chosen subjects from the preprocessed HCP dataset were utilized, comprising 18 b = 0 s/mm  volumes, and

90 b = 1000 s/mm  volumes . QUCCI, SHI, and NeSH were implemented in Pytorch, and trained for 3000 epochs using Adam optimizer for a single

slice with 145x145 matrix size. Competing methods were tested for 8-30 q-space directions, undersampled from the reference fully-sampled case of
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90 q-space directions. Competing methods were used for estimating dMRI images at all 90 q-space directions. Dipy and MRtrix3 were used for

calculating di�usion tensor imaging (DTI) metrics and �ber orientation distribution functions (fODFs), respectively.

Results
DTI maps obtained from interpolated q-space show stark di�erences among the competing methods, as shown in Figs. 2-3. Overall, QUCCI

outperforms SHI and NeSH for highly undersampled cases, whereas NeSH's performance deteriorates. For example, with 8 acquired q-space

directions, QUCCI boosts fractional anisotropy (FA) map �delity by 7.17dB PSNR/33.05% SSIM over NeSH and 1.11dB PSNR/0.50% SSIM over SHI. To

inspect the downstream capabilities, Fig. 4 displays representative fODFs of three di�erent white matter regions, where fODFs from QUCCI display a

high degree of match to the reference fODFs.

Conclusion
Even for highly undersampled acquisitions, QUCCI reconstructs dMRI-based metrics comparable to those derived from the reference fully-sampled

q-space. Through subject-speci�c SH coe�cient predictions and combined implicit and physics-driven explicit regularization, QUCCI enables reliable

q-space interpolation with a signi�cant reduction in dMRI scan times.
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Figures

Figure 1. (a) The proposed QUCCI model for subject-speci�c, unsupervised implicit q-space interpolation. (b) During inference, QUCCI is used to

interpolate the undersampled q-space. (c) Estimated dMRI images can then be used for a variety of downstream tasks such as computing DTI

metrics and constrained spherical deconvolution (CSD) metrics.
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Figure 2. For the highly undersampled case of 15 q-space directions, (a) representative DTI metrics obtained from dMRI images estimated for all 90

q-space directions using QUCCI and the competing methods. (b) The corresponding error maps with respect to the reference metrics from fully-

sampled 90 q-space directions. QUCCI demonstrates visibly improved performance for all DTI metrics. (FA: fractional anisotropy, MD: mean

di�usivity, RD: radial di�usivity, AD: axial di�usivity).

Figure 3. Quantitative performance evaluations using PSNR and SSIM, reported as mean±standard deviation across 5 subjects for DTI metrics: (a) FA,

(b) MD, (c) RD, and (d) AD. QUCCI outperforms SHI and NeSH for highly undersampled cases. (FA: fractional anisotropy, MD: mean di�usivity, RD:

radial di�usivity, AD: axial di�usivity).

Figure 4. Representative �ber orientation distribution function (fODF) glyphs for the highly undersampled case of 15 q-space directions, displayed

for three di�erent 7x4 ROIs corresponding to white matter regions of a single subject. fODFs from QUCCI display a high degree of match to the

reference fODFs.
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