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Synopsis

Motivation: Most diffusion MRI techniques require extensive sampling of q-space to effectively resolve fiber structures at a fine detail. The scan

times become impractically long, especially for clinical settings.

Goal(s): Our goal is to arbitrarily interpolate the q-space data to enable downsampling of q-space, while maintaining high fidelity diffusion metrics.

Approach: We propose QUCCI, a subject-specific unsupervised implicit network model that utilizes both implicit and physics-driven explicit

regularization to encode diffusion MRI signals with angular continuity.

Results: QUCCI achieves superior q-space interpolation, outperforming traditional and deep learning methods.

Impact: QUCCI provides high-fidelity diffusion MRI metrics via improving the angular interpolation of diffusion MRI signals under highly

undersampled q-space cases, which may especially be beneficial in the clinical settings where excessively long scan times are impractical.

Introduction
Diffusion MRI (dMRI) has enabled the study of the brain's complex architecture in vivo. However, resolving fiber structures at a finer detail

necessitates denser q-space sampling, which can be impractical due to excessively long scan times . Deep learning methods for angular q-space

interpolation show potential for reduced scan time by enabling q-space downsampling. However, these methods often demand large training data

and pose challenges when dealing with non-conforming data, such as in pathological cases .

We propose a subject-specific, unsupervised Q-space Upsampling via physics-Constrained Coordinate-based Implicit network (QUCCI) that angularly

interpolates q-space data. QUCCI combines implicit multilayer perceptron regularization with physics-driven spherical harmonic (SH) regularization

and image regularization in the context of dMRI. In comparison to traditional and other deep learning methods, QUCCI demonstrates superior

angular interpolation for highly undersampled q-space acquisitions.

Methods
Classical Spherical Harmonics Interpolation:

For each voxel, dMRI signal in q-space can be decomposed using SH basis functions via a least-squares fitting to the acquired q-space data . For

spherical harmonics interpolation (SHI), dMRI images at an unacquired q-space direction can be estimated via a linear combination of SHs with their

corresponding SH basis functions.

Learning-based Approach:

A previous learning-based approach, NeSH, takes voxel-space coordinates as input, and utilizes coordinate-based networks to predict SH

coefficients for each voxel . For training, predicted SH coefficients are converted to estimated dMRI images, and estimated and acquired dMRI

images are compared at sampled q-space directions. NeSH benefits from implicit regularization of coordinate-based networks to represent q-space

in angular continuity, and utilizes l1-norm regularization on SH coefficients. While NeSH was shown to provide a coherent q-space representation

across a range of undersampling rates, it performs suboptimally towards high undersampling rates.

Proposed Method:

We propose a subject-specific, unsupervised coordinate-based model that utilizes implicit and physics-driven regularization in voxel-space and q-

space domains. QUCCI, outlined in Fig. 1, takes voxel-space coordinates as input, and sets them as centers of isotropic Gaussian distributions. Then,

voxel coordinates sampled from these distributions are mapped to positional encodings . This sampling scheme enables implicit voxel-space

regularization by enforcing adjacent coordinates to have similar image intensities. To enforce data consistency, we adopt a scheduling system that

sets the standard deviation of Gaussian distributions to zero near the end of training.

QUCCI predicts SH coefficients for each voxel. During training, the network minimizes mean-square-error (MSE) between the dMRI images

estimated via SH coefficients and the acquired dMRI images at sampled q-space directions. This procedure enforces implicit q-space regularization,

as the model learns to estimate SH coefficients with no explicit supervision. For explicit q-space regularization, Laplace-Beltrami (LB) regularization

is applied on SH coefficients, as it was shown to be well-suited for single-shell q-space measurements distributed on a sphere . A pre-trained plug-

and-play denoiser is incorporated for explicit voxel-space regularization of the estimated dMRI images . The overall loss is:

where  denotes SH coefficients,  denotes the acquired dMRI images, , is the physical model that estimates dMRI images from SH coefficients,

 is MSE between the estimated and acquired dMRI images,  is the LB regularizer over SH coefficients, and  is the plug-and-play

denoiser in voxel-space.

Implementation Details:

Single-shell dMRI data for five randomly chosen subjects from the preprocessed HCP dataset were utilized, comprising 18 b = 0 s/mm  volumes, and

90 b = 1000 s/mm  volumes . QUCCI, SHI, and NeSH were implemented in Pytorch, and trained for 3000 epochs using Adam optimizer for a single

slice with 145x145 matrix size. Competing methods were tested for 8-30 q-space directions, undersampled from the reference fully-sampled case of

1,2 1,2 1,2,3 1,2

1 2 3

1-3

4

5

6

7

5

8

= ( (k), y) + (k) + ( (k))LQUCCI LMSE Fθ,ϕ RLB RPnP Fθ,ϕ

k y Fθ,ϕ

LMSE RLB RPnP

2

2 9



90 q-space directions. Competing methods were used for estimating dMRI images at all 90 q-space directions. Dipy and MRtrix3 were used for

calculating diffusion tensor imaging (DTI) metrics and fiber orientation distribution functions (fODFs), respectively.

Results
DTI maps obtained from interpolated q-space show stark differences among the competing methods, as shown in Figs. 2-3. Overall, QUCCI

outperforms SHI and NeSH for highly undersampled cases, whereas NeSH's performance deteriorates. For example, with 8 acquired q-space

directions, QUCCI boosts fractional anisotropy (FA) map fidelity by 7.17dB PSNR/33.05% SSIM over NeSH and 1.11dB PSNR/0.50% SSIM over SHI. To

inspect the downstream capabilities, Fig. 4 displays representative fODFs of three different white matter regions, where fODFs from QUCCI display a

high degree of match to the reference fODFs.

Conclusion
Even for highly undersampled acquisitions, QUCCI reconstructs dMRI-based metrics comparable to those derived from the reference fully-sampled

q-space. Through subject-specific SH coefficient predictions and combined implicit and physics-driven explicit regularization, QUCCI enables reliable

q-space interpolation with a significant reduction in dMRI scan times.
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Figures

Figure 1. (a) The proposed QUCCI model for subject-specific, unsupervised implicit q-space interpolation. (b) During inference, QUCCI is used to

interpolate the undersampled q-space. (c) Estimated dMRI images can then be used for a variety of downstream tasks such as computing DTI

metrics and constrained spherical deconvolution (CSD) metrics.
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Figure 2. For the highly undersampled case of 15 q-space directions, (a) representative DTI metrics obtained from dMRI images estimated for all 90

q-space directions using QUCCI and the competing methods. (b) The corresponding error maps with respect to the reference metrics from fully-

sampled 90 q-space directions. QUCCI demonstrates visibly improved performance for all DTI metrics. (FA: fractional anisotropy, MD: mean

diffusivity, RD: radial diffusivity, AD: axial diffusivity).

Figure 3. Quantitative performance evaluations using PSNR and SSIM, reported as mean±standard deviation across 5 subjects for DTI metrics: (a) FA,

(b) MD, (c) RD, and (d) AD. QUCCI outperforms SHI and NeSH for highly undersampled cases. (FA: fractional anisotropy, MD: mean diffusivity, RD:

radial diffusivity, AD: axial diffusivity).

Figure 4. Representative fiber orientation distribution function (fODF) glyphs for the highly undersampled case of 15 q-space directions, displayed

for three different 7x4 ROIs corresponding to white matter regions of a single subject. fODFs from QUCCI display a high degree of match to the

reference fODFs.
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